Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура сталей аустенитного класса

Структура сталей аустенитного класса  [c.175]

Таким образом. присутствие карбидов в структуре стали аустенитного класса — явление почти всегда нежелательное, а часто весьма вредное. Каким же способом возможно удалить из структуры стали карбиды Единственным — растворить их в аустените. А сделать это в отношении карбидов большинства элементов вполне возможно, поскольку с повышением температуры растворимость углерода и легирующих элементов в аустените возрастает. Исходя из этого, общая схема термической обработки сталей аустенитного класса получается такой  [c.150]


Рис. 1в. Структура стали аустенитного класса Рис. 1в. <a href="/info/101258">Структура стали</a> аустенитного класса
Увеличение содержания углерода и легирующего элемента характеризуется не только сдвигом вправо С-кривой, но и снижением мартенситной точки. У стали аустенитного класса мартенситная точка лежит ниже 0°. При охлаждении стали аустенитного класса до 0° превращение не происходит аустенитная структура сохраняется при комнатной температуре (фиг.  [c.361]

Стали аустенитного класса на марганцовистой основе склонны к образованию трещин при нагревании и давлении, отличаются плохой свариваемостью, при медленном охлаждении и отпуске при 300—400 °С структура стали переходит в мартенсит. Однако эта сталь отличается высокой износостойкостью. Твердость металла на поверхностях трения в местах изнашивания повышается в процессе работы звеньев и поддерживается в пределах от 200 до 500 НВ при высокой пластичности, что близко к твердости закаленной стали 45, пластичность которой значительно ниже. Такое свойство аустенитной стали способствует повышению износостойкости в абразивной среде при ударных нагрузках.  [c.379]

Стали аустенитного класса (см. табл. 10), Эти стали, обычно легированные хромом и никелем (или марганцем), после охлаждения до нормальной температуры имеют аустенитную структуру, низкий предел текучести, умеренную прочность, высокую пла-  [c.295]

Стали аустенитного класса. Для получения структуры аустенита эти стали должны содержать большое количество хрома, никеля и марганца. Для достижения высокой жаропрочности их дополнительно легируют Мо, W, V, Nb и В. Эти стали применяют для деталей, работающих при 500—750 G. Жаропрочность ау-. стенитных сталей выше, чем жаропрочность перлитных, мартенситных, мартенситно-ферритных и ферритных.  [c.306]

Классификация легированных сталей по микроструктуре несколько условна. Характерные для какого-либо класса структуры получаются в результате различных режимов термической обработки. Стали ферритного, перлитного и мартенситного классов названы по микроструктурам, получаемым при охлаждении на воздухе — нормализации. Стали аустенитного класса получают характерную структуру аустенита после нагрева до температур около 1000—1100° С и резкого охлаждения — аустенизации. И, наконец, стали ледебуритного класса получают характерную микроструктуру с участками ледебурита в результате очень медленного охлаждения литых деталей — отжига.  [c.164]


Стали аустенитного класса после закалки имеют аустенитную структуру. Некоторые стали аустенитного класса сохраняют аустенитную структуру после нормализации. Стали этого класса содержат много никеля или марганца. В теплотехнике их применяют для пароперегревателей, паропроводов, арматуры на сверхвысокие и сверхкритические параметры пара. В электротехнике аустенитные стали находят применение как немагнитные, в химическом машиностроении — как нержавеющие стали.  [c.165]

Жаростойкими являются высоколегированные хромистые стали фер-ритного и мартенситного класса, хромоникелевые и хромомарганцевые стали аустенитного класса. Чем больше хрома содержит сталь, тем выше максимальная температура ее применения и больше срок эксплуатации изделий. Жаростойкость определяется главным образом химическим составом стали (т.е. содержанием хрома) и сравнительно мало зависит от ее структуры.  [c.490]

При микроисследовании сварных соединений, выполненных газовой сваркой, на элементах из стали перлитного класса не допускается наличие в металле шва околошовной зоны зерна первого балла стандартной шкалы (ГОСТ 5639—82) (см. гл. 1) и участков с мартенситной структурой. При микроисследовании сварных соединений на элементах из стали аустенитного класса не допускается наличие в основном металле шва околошовной зоны зерна крупнее первого балла стандартной шкалы. Структура металла шва и зоны термического влияния должна быть аустенитной с незначительным количеством карбидов, равномерно распределенных по сечению шва. Распределение феррита в сварных соединениях из стали аустенитно-ферритного класса также должно быть равномерным.  [c.168]

При выборе легированны. сталей следует иметь в виду, что наиболее склонными к растрескиванию являются стали мартенситной структуры. Стали аустенитного класса, как было указано ранее, не стабилизированные, а также етабилизи-рованные титаном и ниобием, склонны к растрескиванию в большом количестве, сред, в особенности в растворах, содержащих хлориды.  [c.116]

Крупп) Соляная кислота (конц.)50л/л Азотная я 5 Вода 50 Применяется нагретым до 50- 60 Выявление структуры сталей аустенитного класса (ЭЯ11 ЭЯ2, ЭИ100, ЭИ69 и др.)  [c.142]

Более высокий температурный порог рекристаллизации имеют стали, сохраняющие аустенитную структуру при охлаждении до комнатной температуры. Поэтому ползучесть в сталях аустенит-ного класса проявляется при более высоких температурах и скорость ее при той же температуре меньше, чем у сталей иных структур. Стали аустенитного класса более подходят для работы с большими напряжениями при высоких температурах. Однако сохранение устойчивой аустенитной структуры при комнатной температуре возможно только при сильном легировании стали, главным образом никелем и хромом. Такие стали значительно дороже среднелегированных или легированных более дешевыми компонентами. Кроме того, при аустенитной структуре металла значительно изменяются его физические свойства, что может вызвать ухудшение работы некоторых деталей. Особенно сильно влияют на конструкцию элементов турбины резкое уменьшение теплопроводности и возрастание коэффициента линейного расширения.  [c.136]

Структура сталей аустенитного класса. Типичной для аустенитного класса сталей является сталь типа Х18Н9, содержащая 18% хрома и 9% никеля. После закалки с высоких температур, необходимых для перевода карбидов в твердый раствор, структура стали однородная — аустенит (рис. 16). В околошовных участках наблюдается рост зерен. В тех участках, где при сварке металл нагревается до температуры 680—780° С, наблюдается частичный распад твердого раствора и выпадение по границам зерен карбидов, что понижает коррозионную стойкость стали. Так как структура стали становится неоднородной, возможно также развитие межкрнсталлитной коррозии в агрессивных средах.  [c.28]

С возрастанием содержания никеля увеличивается область существования у-фазы, аустенитная структура делается устойчивой при достаточном содержании никеля уже при низких температурах. Повышение содержания хрома, наоборот, уменьшает область существования у-фазы. Для получения стали аустенитного класса в системе Ре — Сг —N1, как это видно из диаграммы па рис. 160, достаточно добавки 8% N1 при содержании хрома 187о-  [c.218]


В условиях трения и изнашивания, сопровождаемых большими удельными динамическими нафузками, высокой износостойкостью отличается высокомарганцовистая сталь марки Г13. Эта сталь имеет в своем составе 1,0-1,4% углерода и 12,7-14% марганца, обладает аустенитной структурой и относительно невысокой твердостью (200-250 НВ). В процессе эксплуатации, когда на деталь узла трения действуют высокие нафузки, которые вызывают в материале деформацию и напряжения, превосходящие предел текучести, происходит интенсивное наклепывание стали Г13 и увеличение твердости и износостойкости. После наклепа сталь сохраняет высокую ударную вязкость. Благодаря этим свойствам сталь Г13 широко используется для изготовления корпусов шаровых мельниц, щек камнедробилок, крестовин рельсов, гусеничных траков, козырьков землечерпалок и т.д. Необходимо отметить, что склонность к интенсивному наклепу является характерной особенностью сталей аустенитного класса, поэтому их широко ис1юльзуют для изготовления деталей, работающих в условиях трения с динамическими, ударными воздействиями сопряженных деталей или рабочего тела (среды).  [c.18]

На повышение износостойкости влияет насыщение поверхностных слоев элементами, образующими высокотвердые соединения карбидов, нитридов, боридов металлов, а также способность более мягких структур (аустенит) удерживать высокотвердые кристаллы в поверхностном слое и упрочняться в процессе деформирования при трении (например, в1.1соколегированные стали аустенитного класса).  [c.126]

Первыми работами, в которых была показана возможность повысить некоторые механические свойства жаропрочных сталей аустенитного класса методом ВМТО, явились исследования В. Д. Садовского с сотрудниками [16, 70, 74—76]. В дальнейшем систематические работы по влиянию ВМТО на структуру и свойства жаропрочных сталей были проведены М. Г. Лозинским, Е. Н. Соколковым и др. на широком круге металлов и сплавов [13, 14, 71, 73, 77—81].  [c.44]

Характер и количество микротрещин, образующихся на поверхности деталей в процессе малоцикловой усталости, различаются в зависимости от вида микроструктуры. Для аустенитной стали характерно довольно большое количество поверхностных микроповреждений в виде ветвистых трещин. Число микроповреждений усталостного характера в стали феррито-перлитного класса несколько меньше, чем в стали аустенитного класса, а сами трещины чаше всего выпрямляются и протяженность их меньше. Микротрешины в структуре отпущенного мартенсита более прямолинейны и перпендикулярны поверхности изделия, что свидетельствует о менее вязком разрушении. Установлено, что влияние структуры металла на различных участках диаграммы усталостного разрушения разное. Основное влияние структуры проявляется на припороговом участке диаграммы усталостного разрушения.  [c.187]

Нержавеющие, жаростойкие и жаропрочные хромоникелевые стали с аустенитной или аустенитно-мартенситной структурами (Х18Н9Т, Х23Н18, Х15Н9Ю). Скорости резания, которые допускаются при обработке деталей из этих сталей, примерно в 2 раза ниже, чем при обработке деталей из стали 45. Стали этой группы характеризуются наилучшей обрабатываемостью среди других жаропрочных сталей аустенитного класса.  [c.34]

BK6IVI. За счет более мелкозернистой структуры износостойкость выше, чем у сплава ВК6, при несколько меньших прочности и сопротивляемости ударам, вибрациям и выкрашиванию. Чистовая и полу-чистовая обработка жаропрочных сталей и сплавов нержавеющих сталей аустенитного класса, специальных твердых чугунов, твердых и абразивных изоляционных материалов, пластмасс, твердой бумаги, стекла, фарфора. Обработка сырых углеродистых и легированных сталей при тонких сечениях среза на малых скоростях резания.  [c.113]

ВК8В. За счет более крупнозернистой структуры износостойкость ниже, чем у сплава ВК8, при более высоких прочности и сопротивляемости ударам, вибрациям и выкрашиванию. Ударно-поворотное (перфораторное) и вращательное бурение крепких горных пород. Зарубка каменных углей с крупными включениями твердых пород. Обработка камня высокой крепости. Волочение прутков и труб из стали при повышенных обжатиях. Тяжелое черновое точение жаропрочных сталей и сплавов, нержавеющих сталей аустенитного класса и строгание сталей и стального литья.  [c.113]

Стали аустенитного класса со атабильным аустенитом сохраняют аустенитную структуру как после обработки холодом, так и после нагрева при 750° С или пластической деформации.  [c.130]

Проведенные исследования позволили разработать новую хро-моникельмарганцевую жаропрочную сталь аустенитного класса, содержащую небольшое количество никеля [28 ]. Химический состав стали следующий 0,3—0,45% С, доО,35 % Si, 10,0—12,5% Сг, 11,5 -13,5% №, 6—11% Мп, 3,2 -4,2% А1, 1,4—2,0% V. Высокая жаропрочность разработанной стали связана с образованием гетерогенной структуры С мелкодисперсным выделением двух упрочняющих фаз интерметаллического соединения NiAl.H карбидов ванадия. Присутствие этих фаз в стали установлено рентгеноструктурным фазовым анализом. Исследовали микроструктуру и прочностные свойства стали после различных режимов термической ебработки. Образцы были изготовлены -из проката трех опытных плавок стали (№ 1, 2, 3, табл. 47). Изучалось влияние температуры и времени выдержки при закалке и старении на твердость и длительную прочность стали.  [c.171]

В связи с интенсивным развитием машиностроительной промышленности потребность в сталях для работы при высоких температурах постоянно возрастает. Однако возможности использования высоколегированных хромоникелевых сталей аустенитного класса для этих целей ограничены из-за дефицитности никеля. Внимание исследователей уже длительное время привлекает проблема применения аустенитных сталей на хромомарганцевой основе в качестве жаростойкого материала. Но до настоящего времени хромомарганцевые стали не кашли широкого применения. В малоуглеродистых хромомар-гзнцевых сталях нельзя получить однофазную аустенитную структуру при содержании хрома свыше 13%, что в свою очередь ограничивает возможность повышения коррозионной стойкости. Поэтому стали системы Fe—Сг—Мп, работающие при высоких температурах, необходимо дополнительно легировать аустенитообразующими элементами, позволяющими вводить повышенное количество хрома с сохранением аустенитной структуры.  [c.102]


При рабочих температурах воды в теплообменниках, достигающих нескольких сот градусов, значения Сн+ = Сон должны быть еще больше приведенных. Из справочных таблиц [251 увеличение составляет около 10 раз на каждые 100° С. Большая активность воды в зоне контакта с гомогенными по структуре металлами маловероятна (например, действие воды на стали аустенитного класса). Контакт разнородных по электрохимическим свойствам металлов, например железа Е = —0,440 в) и меди ( =+0,337 в) или даже более близкого по свойствам олова ( = —0,136 в), может привести к анодному разрушеник> металла с, меньшим стандартным электродным потенциалом, в рассматриваемом случае железа.  [c.37]

Стали аустенитного класса с 18% Сг и 9—10% N1 (12Х18Н9, 17Х18Н9 и др.) в результате закалки приобретают аустенитную структуру и характеризуются высокой пластичностью (6 = 40—50%, = 50—60%), умеренной  [c.170]

Волочение проволок из сталей аустенитного класса (Х18Н9, Х18Н10Т и др.) проводят с обжатиями более 92%, что резко увеличивает их прочность и значительно снижает пластичность. Такие повышенные обжатия в процессе изготовления проволок с аустенитной структурой выполняют при окончательном волочении. При производстве проволок с мартенситной структурой величина единичных обжатий обычно ниже и определяется температурой в зоне деформации. Заданная температура и соответствующая степень пластической деформации обеспечивают протекание и завершение у >а-превраше-ния в процессе волочения на окончательный размер. Для интенсификации процесса превращения нестабильного аустенита в мартенсит заготовки охлаждают до отрицательных температур.  [c.263]

Хорошую коррозионную стойкость и прочность при высоких температурах имеют стали, легированные хромом и никелем высокое содержание никеля способствует образованию структуры устойчивого при комнатной температуре однородного аусте-нита. Наиболее распространенная марка стали аустенитного класса Х18Н10Т.  [c.218]

Стали аустенитного класса — высоколегироваиные стали они применяются обычно как стали с особыми физическими и химическими свойствами. После закалки они имеют аустенитную структуру, а после отжига — аустенйтно-мартенситную или аустенитно-с рритную. Стали аустенитного класса содержат большое количество легирующих элементов, расширяющих Y-область на диаграммах с железом, например марганца или никеля, делающих их аустенит очень устойчивым. Высокоуглеродистые стали данного класса не поддаются обработке обычным режущим инструментом из-за способности легкого наклепа под режущей кромкой инструмента и превращения при наклепе аустенита в мартенсит. Упрочнение этих сталей обычно проводится методами холодной обработки давлением (холодная прокатка, холодная штамповка).  [c.325]

ВК6М ВК60М За счет более мелкозернистой структуры износостойкость выше, чем у сплава ВК6, при несколько меньших эксплуатационной прочности и сопротивляемости ударам, вибрациям и выкрашиванию. При точении коррозионно-стойких сталей аустенитного класса допускаются скорости резания до 120 м/мин  [c.182]

Управляющим параметром в данном процессе является градиент колебательного давления на границе раздела твердая—жикая фаза, который при достижении критического уровня становится параметром порядка, контролирующим конвективные и аномальные диффузионные потоки, обеспечивающие диспергирование растущих кристаллов. Следует при этом иметь в виду, что градиенты колебательного давления в переходном слое и в жидком металле резко различны из-за особых свойств переходного слоя. Анализ фрактальной размерности структуры при растяжении сталей различных классов показал эффективность УЗО только для сталей аустенитного класса (табл. 23).  [c.227]

Совокупность изменений структуры материала, вносимых облучением, называют радиационным повреждением. Отрицательное следствие радиационных повреждений — охрупчивание, а также радиационное распухание и радиационная ползучесть, вызывающие изменение формы и размеров. Поэтому одно из основных требований, предъявляемых к облучаемым материалам, — их высокая радиационная стойкость (см. п. 8.1.2). Главные конструкционные материалы энергетических ядерных реакторов — стали перлитного класса (корпуса во-до-водяпых реакторов на тепловых нейтронах) и хромоникелевые стали аустенитного класса (детали активной зоны и внутрикорпусных устройств в реакторах на тепловых и быстрых нейтронах, оболочки твэлов и корпуса быстрых реакторов).  [c.341]

Хромоникелевые нержавеющие стали 04Х18Н10,08Х18Н10,12Х18Н10Т содержат большое количество хрома и никеля, мало углерода и относятся к сталям аустенитного класса, в структуре которых иногда присутствуют карбиды хрома. Они используются в тех же средах, что и  [c.96]

Для разработки и изготовления серийно выпускаемых конструкций особый интерес представляют экономнолегированные МСС. Коэффициент линейного расширения (КЛР) в температурной области 100...500 °С экономнолегированной МСС со структурой устойчивого мартенсита в 1,5 раза меньше, чем у сталей аустенитного класса, и, кроме того, МСС претерпевают полиморфное превращение с уменьшением объема при нагреве и его увеличением при последующем охлаждении. В настоящее время в различных конструкциях и изделиях, работающих в агрессивных средах, находят широкое применение коррозионно-стойкие, аустенитно-ферритные стали [9], состоящие из двух основных фаз — аустенита и феррита примерно в равных количествах. Расширение области применения экономнолегированных МСС в двухфазном состоянии представляет как практический, так и теоретический интерес.  [c.160]

По структуре после охлаждения на воздухе (нормализации) различают три основных класса сталей перлитный, мартенситный, аустенитный. Стали перлитного класса характеризуются небольшим содержанием легирующих элементов и соответственно низкой устойчивостью переохлажденного аустенита. При охлаждении на воздухе у этих сталей происходит распад аустенита на ферритокарбидную смесь. Стали мартенситного класса характеризуются средним содержанием легирующих элементов и высокой устойчивостью переохлажденного аустенита. Поэтому при остывании на воздухе эти стали охлаждаются без распада аустенита до температур мартенситного превращения, т.е. происходит самозакалка. Стали аустенитного класса имеют повышенное содержание легирующих элементов, высокую устойчивость переохлажденного аусте-  [c.156]

Введение в сталь никеля способствует не только улучшению механических свойств вследствие аустенизации структуры, но и облегчает пассивацию и повышает устойчивость пассивного состояния, в том числе в средах, провоцирующих развитие таких локальных коррозионных процессов как питтинговая и щелевая коррозия. Повышение коррозионной стойкости сталей вследствие легирования их никелем не связано с изменением состава и свойств пассивирующей пленки — никель в составе пассивирующих пленок не обнаружен. Недостатком хромоникелевых аустенитных сталей является их низкая стойкость портив коррозионного растрескивания, минимум которой приходится на наиболее широко распространенные стали типа 18 r-8Ni. Более 70% всех производимых нержавеющих сталей являются сталями аустенитного класса, содержащими > 17% хрома и свыше 10 % никеля.  [c.188]


Сварные соединения сталей аустенитного класса стабилизация при 780—820° и.ш аустенизация 10U0—110и° (нагрев в ншернале 500—900° со скоростью не менее 100°/ч) для снятия напряжений, выравнивания структуры и свойств. Сварные соединения мартенсит кого или феррит-ного-класса — отпуск при 700—800°  [c.6]


Смотреть страницы где упоминается термин Структура сталей аустенитного класса : [c.175]    [c.33]    [c.65]    [c.171]    [c.55]    [c.245]    [c.170]    [c.296]    [c.511]    [c.593]    [c.255]   
Смотреть главы в:

Справочник рабочего-сварщика  -> Структура сталей аустенитного класса



ПОИСК



Сталь аустенитная

Сталь структура



© 2025 Mash-xxl.info Реклама на сайте