Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распыление ионно-плазменное

Фотоэлектрические свойства пленок Н, получаемых высокочастотным ионно-плазменным распылением, несколько хуже, чем пленок, наносимых разложением силана, что обусловлено большей концентрацией локализованных состояний в запрещенной зоне. Вместе с тем метод ионно-плазменного распыления выгодно отличается от метода разложения силана с точки зрения безопасности.  [c.17]

Ионно-плазменное распыление.  [c.63]

Энергия ионов, попадающих на мишень, определяется в основном разностью потенциалов, пройденной ионом на последней длине свободного пробега перед мишенью, так как ранее приобретенную энергию он практически полностью теряет в столкновениях с атомами газа. Из-за статистического характера процессов соударения частиц всегда существует большой разброс длин свободного пробега, так что энергия ионов, падающих на мишень, имеет существенный разброс и ионы падают на мишень под разными углами и т. д. Поэтому процесс ионно-плазменного распыления, в котором эффекты собственно ионного распыления и явления в газовом разряде тесно переплетены, исследовать труднее, чем распыление ионными пучками.  [c.63]


Рис. 2.3. Принципиальная схема установки для ионно-плазменного распыления Рис. 2.3. <a href="/info/4763">Принципиальная схема</a> установки для ионно-плазменного распыления
Ионно-плазменное распыление — метод получения резистивных, проводящих и диэлектрических пленок, при котором распыление осуществляется бомбардировкой материала мишени ионами плазмы газового разряда низкого Давления, формируемого между термокатодом и независимым анодом. Отличительной чертой ионно-плазменного распыления является высокий вакуум, что обеспечивает получение более чистых пленок. Электрические цепи разряда и распыления развязаны.  [c.428]

Схема с изолированным источником плазмы — схема ионно-плазменного распыления, при которой плазма генерируется в ионизационной вспомогательной камере, откуда сформированный сильным магнитным полем узкий ионный пучок ее диффундирует в главную распределительную камеру с расположенной в ней мишенью, имеющей потенциал, достаточный для ускорения ионов до энергий, необходимых для распыления материала мишени.  [c.428]

Магнетронная схема — метод ионно-плазменного распыления, при котором область газового разряда находится в поперечном магнитном поле обращенного магнетрона (внешний цилиндр — катод, внутренний цилиндр анод), что позволяет усилить ионизацию за счет движения электронов по спиральным траекториям вокруг анода и сконцентрировать ионы плазмы на распыляемой мишени.  [c.428]

Вследствие высокой тугоплавкости предпочтительным методом получения танталовых пленок является катодное распыление, а не напыление в вакууме, хотя последний метод является наиболее предпочтительным для получения особо чистых пленок, в частности сверхпроводящих. Если не применять специальных мер предосторожности, пленки тантала содержат различные примеси. Попытки улучшить однородность и проконтролировать чистоту Танталовых пленок привели к улучшению процесса катодного распыления как общего метода получения тонких пленок. Фактически все модификации катодного и ионно-плазменного распыления разрабатывались первоначально для танталовой технологии.  [c.437]

В США запатентован резистивный сплав на основе одного из благородных металлов (серебра, циркония, палладия, золота, платины, родия) и двух металлов из следующей группы (вольфрама, молибдена, тантала, рения). Температурный коэффициент сопротивления пленок, нанесенных катодным или ионно-плазменным распылением, составляет 6-10 К >.  [c.444]


При осаждении из плазмы применяют в основном реактивные рабочие среды (смеси аргона с азотом или углеводородами при давлении приблизительно 0,1 Па) и металлические катоды. Основной недостаток ионно-плазменного дугового распыления — образование мелких капель металла из-за частичного плавления катода и возможность попадания металлических капель в осаждаемые пленки.  [c.52]

Применительно к нуждам машиностроения вакуумные ионно-плазменные методы нанесения покрытий и создания модифицированных поверхностных слоев можно условно разделить на четыре группы а) ионно-диффузионные методы, осуществляемые в тлеющем разряде б) методы,основанные на явлении катодного распыления в разряде постоянного тока и в высокочастотном разряде в) ионное осаждение г) ионное легирование и внедрение (имплантация).  [c.154]

Вакуумные методы нанесения покрытий и модифицирования поверхности (электроннолучевой и ионно-плазменный методы, термоионное и катодное распыление, ионная имплантация и др.), а также электроискровое легирование и лазерная обработка основаны на использовании электрической энергии. Источники питания, как правило, являются специализированными и во многих случаях входят в состав установки для нанесения покрытий или обработки поверхности.  [c.420]

При формировании многокомпонентных покрытий анализ значительно усложняется, так как коэффициенты распыления отдельных компонент не отличаются высокой точностью даже для термодинамически равновесных фаз. В условиях формирования метастабильных структур ионно-плазменных покрытий можно ожидать аномально высоких коэффициентов распыления в тех случаях, когда это соответствует смещению структуры покрытия к термодинамически равновесной. Анизотропия коэффициента распыления и глубины проникновения ионов в кристаллические материалы приводит к преимущественному росту зерен с ориентацией, благоприятной для каналирования и имеющих минимальный коэффициент распыления. Разница в значениях выхода распыления может достигать сотен процентов [147]. Таким образом, открывается возможность формирования текстурированных покрытий с развитой анизотропией свойств. Дополнительный пучок ионов играет роль стержней, на которые без разрушения могут насаживаться лишь плоскости со вполне определенной ориентацией.  [c.147]

Характерные параметры процесса термическое нанесение при помощи ионного (катодного) распыления ионно- термическое нанесение из плазмы разряда с горячим катодом из плазмы разряда с холодным катодом ионное легирование (имплантация) при помощи плазменных ускорителей  [c.615]

Для изготовления электротехнических материалов в настоящее время используются разнообразные, нередко весьма сложные приемы химического синтеза, различные виды обработки, включая искусственное выращивание монокристаллов, нанесение тонких пленок на различные подложки различные способы особо глубокой очистки (технология зонной плавки, плавка и распыление в высоком вакууме и др.) или введения добавок ионно-плазменная обработка воздействие на материалы электромагнитного поля и ионизирующих излучений и т. д.  [c.5]

Рис. 16. Схема рабочей камеры для ионно-плазменного распыления металлов и полупроводников Рис. 16. <a href="/info/758692">Схема рабочей</a> камеры для ионно-плазменного распыления металлов и полупроводников
Вакуумное конденсационное напыление (осаждение). Покрытие формируется из потока частиц, находящихся в атомарном, молекулярном или их ионизированном состоянии. Для получения потока пара (частиц) используют различные источники энергетического воздействия на материал. Различают формирование потока частиц посредством термического испарения материала, ионным распылением или взрывным испарением - распылением. Соответственно этому вакуумное конденсационное напыление разделяют на методы. При ионизации потока напыляемых частиц реализуется способ ионно-плазменного напыления, а при введении в поток реактивного газа - вакуумное конденсационное напыление.  [c.224]


При осаждении из плазмы для поддержания электрического разряда используется благородный газ. Непрерывность и толщину пленки, размеры кристаллитов в ней можно регулировать изменением давления газа и параметров разряда. Источником металлических ионов при осаждении из плазмы служат металлические катоды, обеспечивающие высокую степень ионизации от 30 до 100 %. Скорость осаждения в этом методе составляет 3 мкм/мин. Основной недостаток ионно-плазменного дугового распыления - образова ние мелких капель металла из-за частичного плавления катода и возможность их попадания в осаждаемые пленки.  [c.406]

Технологический процесс протекает в вакуумных камерах, в которых металл, используемый для формирования покрытия, превращается в газ, ионизированный пар и плазму, а затем в атмосфере реакционного или нейтрального газа оседает на упрочненную поверхность в виде конденсата. Покрытие может быть получено способами термического испарения, катодного или ионно-плазменного распыления или с помощью бомбардировки поверхности потоками осаждаемого вещества. В зависимости от среды реакционного газа (азота или углеводорода) формируется или нитридное, или карбидное покрытие [23].  [c.367]

Первая стадия — перевод вещества из конденсированной фазы в газообразную в основном осуществляется методами термического испарения или ионно-плазменного распыления.  [c.251]

Покровные покрытия наносят с помощью целого ряда методов, к числу которых относятся плазменное и ионно-плазменное напыление, детонационное напыление, химического осаждения из паров, ионное распыление, электронно-лучевое испарение и конденсация в вакууме, вакуумно-дуговое напыление и ряд других.  [c.332]

Из всех методов газотермического напыления (газопламенного, электродугового, высокочастотного и др.) для целей получения композиционных материалов наиболее широко используют — метод и аппаратуру плазменного напыления. В аппаратах плазменного типа для плавления и распыления материала покрытия используется струя дуговой плазмы, представляюш,ая собой поток газообразного вещества, состоящего из свободных электронов, положительных ионов и нейтральных атомов. Плазменную струю получают путем вдувания плазмообразующего газа (аргона, гелия, азота, водорода и их смесп) в электрическую дугу, возбуждаемую между двумя электродами. Напыляемый материал подается в плазменную горелку либо в виде проволоки, либо в виде порошка. Принципиальные схемы устройства головок плазменных горелок показаны на рис. 75. В головке, представленной на рис. 75, а, напыляемый порошок вводится в дуговую плазму, образуемую между вольфрамовым электродом (катодом) и соплом (анодом). В головке, представленной на рис. 75, б, сопло остается электрически нейтральным, а дуговой разряд возникает между вольфрамовым электродом горелки и напыляемой проволокой, которая является расходуемым анодом [36].  [c.170]

Метод плазменного напыления при пониженном давлении в инертной атмосфере. Этот метод в последние годы довольно широко применяется для получения пленок с полупроводниковыми свойствами [157]. В этом методе с помощью различных видов самостоятельного (или несамостоятельного) тлеющего разряда удается наносить равномерные по толщине молибденовые (и вольфрамовые) покрытия с высокой адгезией и малым содержанием примесей. В таких установках вводимый инертный газ переходит в состояние плазмы под воздействием высокочастотного пли высоковольтного разряда. Ионная бомбардировка мишени (анода) приводит к ее распылению и осаждению распыленного материала на подложке. Так как вырванные атомы имеют энергию порядка сотни электронвольт, они способны проникать в поверхностный слой подложки и микротрещины, обеспечивая тем самым хорошую адгезию. Несмотря на положительные качества, получать толстые термостабильные покрытия этим методом трудно и дорого.  [c.106]

Интересно, что критерий соединения в виде (2.56) способен описывать не только соединение металлов при совместной пластической деформации, но и другие процессы. Приведем лишь один пример - нанесение покрытий из газовой или плазменной фаз. На рис. 2.14 показаны схемы нанесения покрытий термическим методом а) и путем распыления б) тяжелыми ионами (например, аргоном Аг ) мишени, т.е. напыляемого материала. Оба процесса реализуются в вакууме. Сущность термического метода состоит в том, что испаритель нагревают до высоких температур, при этом со-  [c.93]

Распространенным методом получения пленок гидрогенизированного аморфного кремния является высокочастотное ионно-плазменное распыление кремния в атмосфере арюнно-водородной плазмы, которое также широко используется в производстве полупроводниковых приборов и микросхем для нанесения пленок других материалов.  [c.16]

Намагничивание тонких магнитных пленок. Под тонкими магнитными пленками понимают слои магнитного вещества толщиной я О, 1 мкм, нанесенные на немагнитную подложку. Наиболее широкое применение получили пленки пермаллоя, содерлощие л 20% Ni и л 80% Fe. На подложку оии наносятся методами термического испарения, катодного или ионно-плазменного распыления.  [c.309]

Эффективность диодных систем катодного распыления снижается при давлениях ниже Ю ЧЛа в связи с уменьшением концентрации ионов рабочего газа, в то же время для получения газоненаполненных пленок целесообразно уменьшить давление в рабочей камере. С этой целью разработаны системы с искусственным поддержанием разряда за счет использования либо термоэмиссионного катода, либо высокочастотного поля, а также многоэлектродные системы. Для поддержания высокочастотного разряда и стабилизации тлеющего разряда используется магнитное поле, предотвращающее попадание вторичных электронов на подложку. Эта группа схем получила название ионно-плазменного распыления.  [c.428]


Ионно-плазменное распыление с плазмо-химическим источником типа <АРа-дикалу> — разновидность ионно-плазменного распыления с изолированным источником плазмы, при котором в плазму источника вводится химическое соединение, участвующее в процессе формирования физической структуры.  [c.428]

Весьма перспективно применение вакуумных ионно-плазменных методов — с ионным распылением и азотированием, методов КИБ, ПУСК, РЭП, распыление моноэнергетическими пучками ионов, с помощью магнетрон-ных распылительных систем. Износостойкие покрытия из нитридов, карбидов, окислов, сложных соединений, алмаза и др., а также антифрикционные покрытия из халькогенидов металлов, полимеров и других материалов наносятся при помощи реактивных методов с участием плазмо-химических реакций. Особенно перспективно применение указанных методов к прецизионным парам, насосам, топливной аппаратуре, газовым подшипникам, гидроприводу, точным направляющим и устройствам. Для обработки поверхностного слоя материала в целях повышения износостойкости используется ускоренный поток ионизированных атомов с энергией 100— 200 кЭВ в вакууме, с глубиной проникновения ускоренных ионов 0,1 мкм. Ионная имплантация применяется также для изменения триботехнических свойств, повышения коррозионной стойкости и прочности сцепления покрытия с основой.  [c.200]

Высокоскоростное ионно-плазменное и термическое распыление материала с последующей кондеисацней ларов  [c.581]

Карбид титана, являющийся перспективным материалом для высокотемпературной электроники, нашел применение в качестве проводящей фазы в керметных резистивных пленках для интегральных схем [270, 271]. Пленки, содержащие АЬОз и Ti в соотношении 1 1 по массе, осаждают ионно-плазменным распылением на нагретые до 600 °С поли-коревые подложки. Пленки Ti -AljOa, толщина которых составляет 20—300 нм, имеют электронографически аморфную структуру, сохраняющуюся до 1000 °С. Эти пленки значительно превосходят по стабильности структуры пленки традиционных резисторов Ti-АЬОз, в которых при 1000 °С наблюдается увеличение размера зерен до 50 нм и изменение фазового состава.  [c.204]

В проекте Постоянные пленочные магниты на основе сплава Nd-Fe-B , выполняемом в Московском государственном институте стали и сплавов (руководитель - проф., д. ф.-м. н. А.С.Лилеев), методом ионно-плазменного распыления получены магнитотвердые пленочные магниты толщиной 30...300МКМ с магнитной энергией до 35МГс-Э. Найдены оптимальные условия напыления. Разработана технология получения пленок с кристаллической текстурой, перпендикулярной плоскости пленки, со свойствами = 23,7 кЭ, = 10,1 кГс и (ВН) - 25,5 МГс Э, и изотропных магнитотвердых пленок, обладающих = 30 кЭ, В = 6,3 кГс и = 12 МГс-Э. Изучено влияние температуры подложки при на-  [c.536]

Способы получения аморфного состояния могут быть отнесены к одной из следующих групп закалка из жидкого состояния (спиннингование расплава, центробежная закалка, метод выстреливания, метод молота и наковальни, вытягивание расплава в стеклянном капилляре и др.), закалка из газовой фазы (вакуумное напыление, ионно-плазменное распыление, химические реакции в газовой фазе и др.), амор-физация кристаллического тела при высокоэнергетических воздействиях (облучение частицами поверхности кристалла, лазерное облучение, воздействия ударной волной, ионная имплантация и др.), химическая или электрохимическая металлизация.  [c.554]

Ионно-плазменное напыление. В некотором смысле ионноплазменное напыление аналогично ионному распылению, но имеет неоспоримые преимущества с точки зрения качества получаемых покрытий. Осаждение ведется из плазмы на деталь, находящуюся под отрицательным потенциалом, значение которого достигает 10 В. Между изделием и заземленными частями установки создается тлеющий разряд в инертном газе, обычно аргоне, находящемся под давлением в единицы паскалей. Разряд обеспечивает очистку поверхности за счет распыления окисных и адсорбционных слоев. После очистки материал покрытия испаряется и вводится в область разряда с последующим осаждением на поверхность изделия. Метод позволяет получать пленки равномерной толщины и мелкодисперсной структуры с хорошей адгезией к подложке.  [c.75]

Существенное ограничение метода, связанное с получением паров тугоплавких материалов и соединений сложного химического состава, в значительной степени связано с развитием магнетроиного распыления. К недостаткам ионно-плазменного напыления можно отнести большое число параметров, активно влияющих на структуру и свойства получаемых покрытий. Это делает задачу оптимизации технологического процесса сложной, подчас неразрешимой.  [c.76]

Более универсален по сравнению с катодным метод ионно-плазменного распыления (рис. 16). В этом случае распыляемая мишень является третьим электродом, несущим отрицательный потенциал. Мишень распыляется ионахми инертного газа при давлении 133(10 — 10 ) Па. Выбитые из мишени атомы конденсируются на подложке, находящейся напротив мишени. Этим методом успешно распыляют металлы даже с резко различными свойства-  [c.41]

Характерная особенность высококонцентрационной имплантации-получение из одного источника импульсно-периодических пучков ускоренных ионов и плазменных потоков, что дает возможность воздействовать на обрабатываемую поверхность чередующихся ионных пучков и потоков плазмы для осаждения покрытия. При этом за счет атомного перемешивания удается компенсировать распыление поверхности и повысить концентрацию внедряемой примеси.  [c.262]

Для бомбардировки мишени удобно использовать заряженные частицы — ионы, так как их легко разгонять до нужной энергии в электрическом поле. Иногда для распыления мишени применяют специальные источники ионных пучков, в которых ионы отсортиро ваны по массам и имеют одну и ту же энергию. Но чаще в качестве источника ионов используется газоразрядная плазма, из которой положительные ионы вытягиваются отрицательно заряженной мишенью. Такой способ распыления называют аонно-плазменным. Рассмотрим его более подробно. ,  [c.62]

Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]



Смотреть страницы где упоминается термин Распыление ионно-плазменное : [c.526]    [c.72]    [c.440]    [c.132]    [c.11]    [c.259]    [c.38]    [c.234]    [c.427]    [c.266]   
Материалы в приборостроении и автоматике (1982) -- [ c.428 ]



ПОИСК



Иониты

Ионное распыление

Ионов

Плазменное эхо

По ионная



© 2025 Mash-xxl.info Реклама на сайте