Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Природа параметров поглощения

Природа параметров поглощения  [c.279]

Главной целью попыток оценки вариаций параметров поглощения по площади и/или по разрезу является выявление и оконтуривание залежей углеводородов. Модель распространения сейсмических волн, связывающая величину поглощения с типом порового флюида, будет рассмотрена в гл. 9. Там же будут обсуждаться и результаты упомянутых попыток. Здесь об этих попытках зашла речь лишь постольку, поскольку сами способы оценки параметров поглощения, в частности, способ спектрального отношения, не содержат никакой специфики, отображающей природу исследуемого поглощения. Поэтому получаемые результаты сами по себе могут давать в лучшем случае лишь качественную картину, возможно отображающую наличие залежи. Для более четких, а возможно, и количественных суждений необходима калибровка получаемых оценок по результатам испытания скважин и привлечение статистических способов совместной интерпретации скважинных и сейсморазведочных данных.  [c.115]


В то время как спектральный коэффициент поглощения зависит от длины волны излучения X, средние интегральные коэффициенты поглощения ар и являются функциями температуры. Природа температурной зависимости для интегральных коэффициентов ар и a J определяется двумя обстоятельствами особенностями спектральной зависимости для и собственно зависимостью от температуры комплексного показателя преломления частиц. Наиболее существенным является здесь влияние селективных свойств частиц, связанных со значением параметра дифракции р.  [c.15]

При больших размерах частиц безразмерные коэффициенты ослабления, поглощения и рассеяния частицы, уменьшаются с ростом параметра рд и в пределе при рд, стремящемся к бесконечности, стремятся к определенным постоянным значениям. Эти значения для коэффициентов поглощения и рассеяния зависят от оптических констант вещества частицы, а для коэффициента ослабления равны двум независимо от физической природы вещества. Если принять это последнее значение, то величина коэффициента ослабления среды по формулам (3-88) и (3-84) будет равна  [c.118]

Современная молекулярная спектроскопия развивается по двум основным направлениям. Первое посвящено изучению спектров молекул в зависимости от их строения. Оно базируется на теоретическом и экспериментальном исследованиях изолированных систем (разреженные пары, газы). Изучение закономерностей поглощения и испускания свободных соединений позволяет решать следующие основные задачи определять природу химической связи, строение молекул и комплексов, их физикохимические параметры (энергетические, электрические и оптические), исследовать энергетику внутримолекулярных процессов, проводить качественный и количественный анализ газовых смесей.  [c.5]

Исследование природы межмолекулярных сил спектроскопическими методами основывается на изучении изменений полос поглощения и испускания при фазовых переходах, а также при замене растворителя. Различные типы связей проявляются неодинаково. Сравнительно часто наблюдаются сдвиги спектров, изменение их ширины, формы, интегральной интенсивности, появление новых полос или исчезновение старых. Содержащаяся в этих изменениях информация может быть расшифрована путем строгого и последовательного анализа, в процессе которого следует разделить спектроскопические эффекты, связанные с наличием разнообразных взаимодействий, и установить количественные соотношения между характеристиками спектральных полос и параметрами среды.  [c.6]


Межмолекулярные взаимодействия оказывают существенное влияние на характер колебательного движения атомов и могут привести к изменению формы, динамических и электрооптических параметров молекул. Соответствующим образом искажаются полосы поглощения и рассеяния. Наиболее характерным проявлением влияния среды на спектры при переходе вещества из газовой фазы в конденсированную является уширение полос и изменение их формы. Исследование характера изменений спектральных полос служит основой для изучения процессов колебательной, вращательной и поступательной релаксаций, природы межмолекулярных взаимодействий, строения жидких систем, для обнаружения ассоциатов и оценки величин флуктуаций.  [c.130]

Следуя той же логике регионального моделирования, К. Я. Кондратьев и др. [16, 17, 22] предложили снова вернуться к усложненной геофизической классификации типовых форм аэрозоля, выделив как самостоятельные аридные и субаридные формации лесные и болотистые районы, полярные широты. В отличие от работ [53, 54], в работах [16, 17] в основу глобальной микрофизической модели положено параметрическое семейство обобщенных гамма-распределений [3]. При этом сохраняется та же проблема адекватного прогноза входных параметров модели f(r). В работе [15] приведен большой объем расчетного материала, касающегося спектрального = 0,13-1-20,0 мкм) и высотного поведения коэффициентов рассеяния и поглощения, индикатрис рассеяния проанализированы оптические свойства составляющих компонент аэрозоля (сульфатов, хлоридов, пылевых фракций различной природы).  [c.139]

Для повышения чувствительности ОА-метода в большинстве случаев целесообразно увеличить среднюю интенсивность излучения в ОА-ячейке (не выходя в режим насыщения). При фиксированных параметрах лазера это можно осуществить за счет фокусировки излучения, увеличения числа проходов луча через ОА-ячейку помещением ячейки внутрь резонатора лазера. Эти способы дают возможность увеличивать чувствительность более чем в 100 раз [12]. Реализация высокой чувствительности лазерных ОА-спектрометров ограничивается фоновыми сигналами различной природы, происхождение которых не связано с поглощением излучения в исследуемой среде. Авторы [12] дают следующую классификацию фоновых сигналов.  [c.138]

Отметим, что, как видно из (Д.1.14), в классической модели коэффициент поглощения а всегда положителен и, следовательно, усиление света невозможно. Действительно, как упоминалось и раньше, эффект вынужденного излучения, приводящий к усилению света, имеет квантовую природу. Но его легко ввести в нашу классическую модель в духе принципа соответствия Бора. Для этого в уравнение (Д.1.14) вместо полного числа резонансных частиц в единице объема Му нужно ввести разность населенностей (квантовый параметр) резонансного перехода М = = М2 - Мх. Тогда получим  [c.296]

Следует подчеркнуть, что полностью микроскопический подход к исследованию энергетического спектра электронов в твердом теле связан с чрезвычайными математическими трудностями обш,его характера, не специфичными именно для многоэлектронной задачи. Эти трудности возникают и в обычной одноэлектронной теории и связаны с необходимостью решения задачи о движении одного электрона в периодическом поле идеальной решетки. Дело в том, что обычно в коллектив электронов, определяющих электрические, магнитные и др. свойства твердого тела, естественно включать электроны не всех вообще, а лишь одной-двух внешних атомных оболочек. Конкретное разделение на коллектив электронов и атомные остовы зависит, естественно, от природы вещества и характера задачи (см. ниже). Однако вид электронной плотности даже в изолированном атоме обычно не удается представить в простой аналитической форме. В результате приходится либо апеллировать к более или менее грубым приближенным методам, либо иметь дело с уравнением неизвестного вида. По этой причине представляется целесообразным вообще отказаться от полного вычисления энергетического спектра электронов в идеальной решетке, определяя его параметры из опыта. В полупроводниках для этой цели удобно использовать, например, явление циклотронного (диамагнитного) резонанса [2], [3] в металлах успех сулит использование гальваномагнитных данных [1] и исследование поглощения ультразвука в магнитном поле [4]. Динамическая теория при этом должна давать ответ на следующие вопросы  [c.158]


УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]

Самый грубый вариант релаксационной теории с одним характерным параметром и одним временем релаксации (см. 22) сыграл огромную роль в понимании природы тонкой структуры линии Релея и предсказании значительной дисперсии скорости звука в целом ряде жидкостей. Исследование жидкостей, в которых прежде не находили дисперсии, а релаксационная теория явно указывала на наличие значительной дисперсии, показало, что, действительно, до частот дисперсия скорости звука обнаруживается. Несмотря на такой эвристический успех релаксационной теории, вряд ли можно было ожидать, что вариант теории с одним временем релаксации количественно опишет ход поглощения с частотой в целом ряде жидкостей. И все-таки оказалось, что в сероуглероде измеренная в ультразвуковом диапазоне частот зависимость коэффициента поглощения от частоты очень точно описывается формулой  [c.299]

Фазовый переход в критич. точке (предельной на кривой равновесия фаз) имеет много общего с фазовым переходом II рода. В критич. точке фазовый переход происходит в масштабах всей системы. Флуктуационно возникающая новая фаза по своим св-вам бесконечно мало отличается от св-в исходной фазы. Поэтому возникновение новой фазы не связано с поверхностной энергией, т. е. исключается перегрев (или переохлаждение) и фазовый переход не сопровождается выделением или поглощением теплоты, что характерно для фазовых переходов II рода. Знание св-в в-в в К. с. (см. Критические явления) необходимо во мн. областях науки и техники при создании энергетич. установок на сверхкритич. параметрах, установок для сжижения газов, разделения смесей и т. д. ф Фишер М., Природа критического состояния, пер. с англ.. М., 1968 Б р а у т Р., Фазовые переходы, пер. с англ., М., 1967 Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 3 изд., ч. 1, М., 1976.  [c.333]

Оценки основных термодинамических характеристик плазмы искрового канала температуры, коэффициентов и показателей поглощения, потерь энергии с излучением и других - основаны на измерениях спектральной плотности лучистого потока (или яркости Ья). Результаты измерений спектральной плотности яркости искрового канала в оптически прозрачных твердых диэлектриках (ЩГК, органическом стекле, полевом шпате) по методу сравнения, несмотря на тщательный контроль за сохранением условий эксперимента (параметров разрядной цепи, длины межэлектродного промежутка, параметров оптической системы, геометрии образца и т.д.), подвержены значительным статистическим флуктуациям. Природа этих разбросов обусловлена малыми радиальными размерами искрового канала, особенно в начальной стадии его расширения, искривлениями и нестабильностью положения канала относительно оси электродов, вариациями кинетики трещин вокруг канала и т.п. Изучение влияния типа ЩГК, режимов энерговклада и других факторов возможно только с применением статистических методов, в частности, дисперсионного анализа. Результаты проверки закона распределения отдельных измерений максимального значения спектральной плотности  [c.45]


При распространении звуковых волн малой амплитуды коэффициент поглощения большинства газообразных и жидклх сред больше (и в некоторых случаях значительно) коэффициента, рассчитанного по вязкости и теплопроводности среды. Как это было установлено для газов Кнезером [27], а затем в общем случае Мандельштамом и Леонтовичем [26] и в дальнейшем развито в раде теоретических и экспериментальных работ, эти дополнительные потери связаны с отклонением процессов, протекаю-Ш(Их в среде под действием звука, от равновесных. Эти внутренние процессы могут иметь различную физическую природу, однако с точки зрения феноменологической они могут характеризоваться некоторым параметром (или многими параметрами) и временем релаксации t (или многими временами релаксации), т. е. характерным временем возвращения системы, выведенной из состояния равновесия, в равновесное состояние. Точное предсказание времени релаксации может быть сделано на основании детального рассмотрения релаксационного механизма.  [c.129]

Выражения для компонент электромагнитного поля дифрагированной (рассеянной) волны получаются в виде разложений в бесконечные ряды по электрическим и магнитным мультиполям коэффициентами разложения служат слон<пые функции параметра р = 2лг/А, (г — радиус шара, к — длина волны) и показателей преломления образующего шар вещества п и окружающей среды По- Ряды сходятся очень медленно число членов, к-рые следует учитывать, приблизительно равно 2р, поэтому прп больших р необходимо применение вычислительных машин (опубликовано иеск. таблиц). При р 1 и пр < 1 существен только первый член ряда, т. е. электрич. диполь, что приводит к закону Рэлея, причем поперечные сечения рассеяния с и поглощения а пропорциопальны и соответственно (к — показатель поглощения вещества, образующего шар). Если р 1, но пр не мало, то при пр = кл (к — целое число) ст резко возрастает до о = бяг (резонансы Ми). С увеличением р рост о и а замедляется и сопровождается постеигапю затухающими осцилляциями. При р > 1 коэффициент ослабления а + о 2лг . Индикатриса рассеяния сильно зависит от р и от п. Если размеры шара близки к X, то характерной особенностью индикатрисы является большое количество резко выраженных максимумов и минимумов, имеющих интерференционную природу. При р а 1 индикатриса сильно вытянута вперед (индикатрисный эффект Ми) и при малых углах рассеяния приобретает отчетливо выраженный дифракционный характер. Столь же резкие изменения с ростом р испытывает поляризация рассеянной (дифрагированной) волны. При нек-рых р > 1 и для нек-рых углов рассеяния она оказывается отрицательной (поляризационный эффект Ми), т. е. плоскость поляризации совпадает с плоскостью рассеяния.  [c.227]


Смотреть страницы где упоминается термин Природа параметров поглощения : [c.140]    [c.266]    [c.131]    [c.180]    [c.136]    [c.128]    [c.36]    [c.26]    [c.360]   
Смотреть главы в:

Физика дифракции  -> Природа параметров поглощения



ПОИСК



Поглощение

Поглощение (параметр)

Природа



© 2025 Mash-xxl.info Реклама на сайте