Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термореактивные Свойства механические

Помимо описанных выше термопластичных компаундов, применяются компаунды, обладающие термореактивными свойствами, которые после введения их в изоляцию в результате термообработки отверждаются. Эги компаунды применяются для пропитки и заливки различных изделий (сухих трансформаторов, различных радио-деталей, изоляции водостойких электрических машин и т. п.) заливка обеспечивает значительное улучшение электрических свойств заливаемой изоляции, защиту ее от увлажнения и от механических повреждений и т. п. Важно, чтобы термореактивные компаунды при отверждении не выделяли газов, паров воды и т. п., так как иначе в изоляции могут образоваться пузыри.  [c.100]


Использование стеклянного волокна в качестве наполнителя сохраняет в пластмассе характерные для смолы диэлектрические свойства. Механическая прочность изделий из стекловолокнита не уступает прочности асбоволокнитов. Особенно ценными материалами являются пластмассы, представляющие собой сочетание стеклянного волокна и модифицированной фенольно-формальдегидной смолы (АГ-4) с термореактивными полимеризационными смолами или с полисилоксановыми смолами.  [c.49]

В табл. 19.6 приведены физико-механические свойства некоторых термореактивных пластмасс с волокнистыми наполнителями.  [c.358]

Как термореактивные, так и термопластические пластмассы имеют множество различных названий и марок, отличающихся по своим физическим, механическим, технологическим и эксплуатационным свойствам.  [c.189]

Композиционные материалы появились в природе вследствие эволюции органических материалов. Многие машиностроительные материалы представляют собой тот или иной вид композиционных материалов. Для получения более высоких физико-механических свойств полимеров термопласты и термореактивные полимеры, применяемые в химической промышленности, упрочняют армиру-юп] ими наполнителями.  [c.309]

Выбор того или иного метода переработки пластиков в значительной мере определяет физико-механические, диэлектрические и другие свойства изделия и, в свою очередь, зависит от того, является ли полимер, используемый в качестве связующего, термопластичным или термореактивным. В процессе переработки пластических масс в результате физико-химических процессов происходит переход из вязко-текучего состояния в твердое, структурирование и ориентация полимера и ряд других изменений.  [c.13]

Физико-механические свойства термореактивных пластмасс  [c.167]

Ненасыщенные полиэфирные смолы в неотвержденном состоянии представляют собой растворы ненасыщенных полиэфиров с относительной молекулярной массой 700—3000 в мономерах или олигомерах, способных к полимеризации с этими полиэфирами. Эти термореактивные материалы с небольшой вязкостью способны отверждаться при комнатных температурах и обладают в отвержденном состоянии хорошими механическими и электроизоляционными свойствами и стойкостью к действию воды, бензина, масел, кислот и др. В связи с хорошей адгезией они преимущественно используются в качестве связующих в производстве стеклопластиков, заливочных и пропиточных составов и т. д.  [c.245]

Термореактивные пластмассы, содержащие наполнители, изменяют свои свойства в зависимости от состава смолы, способа отверждения, типа отвердителя, вида и содержания наполнителя. Несмотря на большое влияние наполнителей на механические свойства пластмассы, можно наблюдать, что температурная зави-  [c.28]


У большинства термореактивных смол изменения динамических величин при повышении температуры не так велики, как у термопластов, хотя в области размягчения тоже происходит у них снижение G или Е и повышение декремента затухания [3]. О значении показателей динамических свойств пластмасс, полученных измерением при действии слабой механической переменной нагрузки, будет сказано ниже.  [c.58]

Общая закономерность изменения механических свойств пластиков на основе термопластичных и термореактивных смол в зависимости от температуры представлена на фиг. 25.  [c.304]

Физико-механические свойства. Известно, что термопластичные материалы по механическим свойствам уступают термореактивным. Однако эти свойства не оказывают решающего влияния на работоспособность подшипниковых узлов. Лишь модуль упругости при сжатии влияет на податливость рабочей  [c.38]

Пресс-порошки термореактивные Механические свойства 476  [c.641]

Физико-механические свойства пластмасс, применяемых для изготовления деталей машин, приведены в т. 6 наиболее употребительный материал для зубчатых колес — термопласты на основе полиамидных смол типа капрона значительно реже для этой цели используются термореактивные слоистые пластмассы (текстолит и др.) вследствие их необратимости, более высокой стоимости, меньшей прочности и сложности обработки.  [c.411]

Слоистые пластмассы получают прессованием слоистых наполнителей (бумаги, ткани или шпона) с последующей обработкой термореактивными смолами. Пластики этой группы являются отличными диэлектриками они обладают высокими химической стойкостью, механической прочностью, почти не склонны к пластическим деформациям, очень чувствительны к ударам (кроме текстолита и СВАМ) характеризуются неоднородностью п анизотропностью (механические характеристики различны во взаимно-перпендикулярных направлениях). Свойства этой группы пластиков во многом зависят от наполнителя, его подготовки и соотношения наполнителя и связующего.  [c.310]

Физико-механические свойства термореактивных материалов  [c.323]

Текстолит. Конструкционный текстолит (ГОСТ 5—72) представляет собой слоистый пластический материал, полученный путем прессования нескольких слоев хлопчатобумажной ткани, пропитанной термореактивными смолами. Выпускается текстолит конструкционный марок ПТК и ПТ (1-го и 2-го сортов), предназначенных для изготовления шестерен, втулок, подшипников скольжения, роликов, прокладок, панелей и других изделий технического назначения и марок ПТМ-1 и ПТМ-2, предназначенных для изготовления вкладышей подшипников прокатных станов и других изделий. Физико-механические свойства и предусмотренные стандартом толщины листов текстолита марок ПТК и ПТ показаны соответственно в табл. П-44 и II-45.  [c.82]

Последнее десятилетие характеризуется непрерывным ростом производства полимеров с различными химическими, физическими, механическими и другими свойствами и разработкой методов их соединений сваркой. Однако пока еще является проблемой сварка термореактивных полимеров, хотя исследования, проводимые в некоторых организациях, дают обнадеживающие результаты. Детали из термореактивных пластмасс, как правило, соединяются склеиванием.  [c.141]

С механической точки зрения термореактивные полимеры имеют следующую особенность с повышением температуры они остаются твердыми материалами вплоть до полного термического разложения. Термопластичные же полимеры размягчаются с ростом температуры, приобретают при этом свойства вязкой жидкости. Ниже будет идти речь главным образом о механических свойствах полимеров при так называемых комнатных температурах около 20°С.  [c.58]

Дефектность значительно влияет на прочность при межслойном сдвиге и продольном сжатии (рнс. 219). Механические свойства стеклопластиков зависят от угла между направлением растягивающей силы и направлением армирующих волокон (рис. 220). Усилить материал в различных направлениях можно соответствующим расположением наполнителя (трубы, цилиндры, получаемые способом намотки). Физико-механические свойства термореактивных пластмасс даны в табл. 47.  [c.467]


Механические и физические свойства термореактивных пластмасс с наполнителем  [c.42]

Ленты на основе слюдинитовой бумаги, пропитанные термореактивными компаундами или лаками, позволяют получить термореактивную изоляцию, отличающуюся более высокими свойствами, чем изоляция из микалент на битумномасляном лаке, которая не обладает термореактивными свойствами. Повышенное значение электрической прочности, нагревостойкости, срока жизни и механической прочности термореактивной изоляции на основе слюдяных бумаг по сравнению с микалентой позволяет уменьшить толщину корпусной изоляции высоковольтных машин, повысить плотность тока в обмотках, что в свою очередь повышает технический уровень машин.  [c.228]

Разные смолы при нагреве претерпевают различные изменения. В зависимости от характера этих изменений пластмассы делятся на две группы термореактивные и термопластичные (термопласты). Термопластичные пластмассы при нагреве сначала плавятся, а затем после затвердевания переходят в твердое и не растворимое состояние. Для повторного использования они не пригодны. Термопластичные пластмассы при нагреве плавятся. После охлаждения п затвердевания они могут быть вновь нагреты и повторно расплавле1[ы. Кролю того, они растворяются в органических растворителях. Синтетптеские смолы связывают и цементируют пластмассу и определяют ее тип (термореактивиая или термопластичная, а также влияют на ее свойства (механические, физические и электрические),  [c.50]

Существует значительное ко.яичество неметаллических материалов, которые успешно могут заменить металлы и их сплавы. Все более широкое применение получают различные виды полимеров (пластмасс), которые благодаря своим особым физическим и механическим свойствам позволяют использовать их для литья под давлением, прессования, формовки из листов, сварки, склеивания, наплавления и других технологических процессов изготовления деталей. Полимерные материалы (пластмассы) подразделяются на две группы термопластичные и термореактивные.  [c.188]

Неметаллические подшинниковые материалы. Пластические массы — термореактивные типа текстолита и термопластичные, в основном полиамидные, широко используют для изготовления втулок и вкладышей подшипников их физико-механические свойства приведены в табл. 19. Коэффициент теплопроводности пластмасс в 200 раз меньше, чем коэффициент теплопроводности стали, что затрудняет теплоотвод из рабочей зоны подшипника. Для уменьшения нагрева вкладышей следует изготовлять их с малой толщиной стенок или же применять облицовку на металлической основе из тонкого слоя полиамидной смолы.  [c.423]

Мочевино-формальдегидные смолы получаются в результате конденсации мочевины с формальдегидом в присутствии оснований или щелочей. Отличаясь термореактивностью и способностью переходить при нагревании в твердое, неплавкое и нерастворимое состояние, они подобно резолам могут быть использованы для получения различных изделий, не уступающих по механическим и электроизолирующим свойствам бакелитовым смолам.  [c.102]

Описанные выше компаунды — термопластичные они размягчаются (для пропитки и заливки) посредством нагревания, а отвердевают при последующем охлаждении. За последние годы все большее значение приобретают термореактивные компаунды, необратимо отверждающиеся в результате происходящих в жидком компаунде химических превращений. Как правило, термореактивные компаунды обладают более высокой нагревостойкостью по сравнению с термопластичными, так как при нагреве (после отверждения) они уже не размягчаются. Термореактивные компаунды применяются для пропитки и заливки различных деталей и узлов сухих трансформаторов, изоляции водостойких электрических машин заливка значительно улучшает электрические свойства изоляции, защищает от увлажнения, механических повреждений и пр. Однако заливка термореактивным компаундом затрудняет ремонт детали при ее пробое или ином поврежденип, в большинстве случаев при поврел<де-нии залитой детали требуется ее замена.  [c.133]

Влияние воды на армированные минеральным наполнителем полимерные композиты может быть довольно сложным в зависимости от природы полимера и наполнителя. У таких чувствительных к воде полимеров, как найлон, адсорбция воды вызывает набухание и снижение модуля упругости. Термореактивные смолы, например полиэфиры, в горячей воде вначале набухают, а затем сжимаются до исходного объема в результате выделения растворимых веществ и процесса полимеризации остаточных функциональных групп [3]. Пер1Воначальное набухание в воде приводит к снижению усадочных напряжений в полимере, и поэтому механические свойства композитов могут улучшаться при кратковременной выдержке, пока не начинается деструкция полимера или взаимодействие воды с поверхностью раздела. Полиолефины и кремнийорганические смолы относительно инертны к воздействию воды.  [c.209]

Почти все известные термопласты в сочетании с упрочняющими волокнами применяются в деталях, изготовляемых различными методами. При этом назначение детали, требования к ее внешнему виду, условия эксплуатации, а также экономичность и механические свойства оказывают решающее влияние на выбор материалов матриц. Например, термореактивные смолы используют в основном для тех деталей кузова, которые требуют окраски в готовом виде. Термопласты в большей степени склонны к пигментации, поэтому их применяют в формованных деталях, внешнему виду которых придается важное значение. Улучшение физических характеристик деталей из термопластов, изготовляемых методом иижекционного прессования, обычно достигается путем добавления в матрицу умеренного количества волокна-упрочнителя. В случае применения формования прессованием для упрочненных полиэфирных смол показана возможность производства крупных партий деталей больших размеров при сравнительно невысоких затратах. Например, отдельные детали кузова из композиционного материала автомобиля Шевроле Корвет имели размеры 1,8 X 3,0 м при массе около 24 кг.  [c.13]


Специфические свойства той или иной смолы (олигомера), входящей в состав термореактивных пластмасс, определяют не только их рецептуру (необходимость введения отвердителей, количественное содержание того или иного наполнителя и т. п.) и его технологические характеристики (текучесть, параметры прессования — температура, давление, время, величину технологической усадки, количество выделяющихся летучих), но и основные свойства готовой детали (теплостойкость, формо-и размероизменяемость во времени и под действием различных внешних факторов, механическую прочность, химическую стойкость, электроизоляционные свойства и т. п.). В состав большинства пластических масс, кроме полимерного связующего, могут входить отвердители, пластификаторы, наполнители, красители, порообразо-ватели, смазывающие вещества и другие добавки.  [c.12]

При решении вопроса о применении отдельных видов пластиков следует учитывать их специфические особенности. Так например, слоистые пластики (текстолит, гетинакс, дельта-древесина или лигнофоль и др.) анизотропны, т. е. имеют различные свойства в различных направлениях, зависящие главным образом от расположения слоёв и соотношения наполнителя и смолы в готовом материале. Высокое сопротивление воздшштвию вибрационных нагрузок хотя и выгодно отличает пластмассы от металлов, однако повышенная хрупкость (и не всегда достаточная прочность) прессованных деталей из порошкообразных пластмасс ограничивает их применение в силовых элементах конструкций. Термореактивные, а в особенности термопластичные материалы подвержены пластической деформации (текучести на холоду) под влиянием постоянно действующих нагрузок физико-механические свойства большинства пластиков сильно зависят от температуры и влаасности среды, в которых должен работать материал размеры деталей из пластмасс могут изменяться не только под влиянием постоянно действующих нагрузок и окружающей среды, но и в результате изменений, происходящих в процессе старения.  [c.293]

Влияние темперах у-р ы. Изменение механических свойств под влияниемтемперату-ры в моментнагружения(приис-пытании) или после воздействия повышенных или пониженных температур наиболее резко сказывается на термопластических материалах. Предел прочности при растяжении, модуль упругости, предел текучести и предел усталости термопластов типа плексиглас (органическое стекло) с понижением температуры (в определённом интервале) возрастают, а удлинение уменьшается при повышенных температурах удлинение и удельная ударная вязкость возрастают. С понижением температуры (до—80 С) предел прочности при растяжении слоистых термореактивных пластиков типа текстолита и некоторых других пластиков возрастаег, а повышенные температуры, особенно при их длительном воздействии,увеличивают хрупкость и снижают прочность.  [c.304]

Предварительный подогрев. Предварительным подогревом термореактивного прессматериала достигается 1) удаление большого количества влаги и летучих, ускоряющее процесс прессования 2) уменьшение времени пребывания (выдержки) в прессформе материала, загружаемого нагретым до температуры, близкой температуре прессования, и частично размягчённым, а также резкое сокращение времени замыкания пресс-формы 3) значительное снижение необходимого для прессования удельного давления, что уменьшает износ прессформы, исключает возможность поломки её тонких оформляющих элементов и предотвращает деформацию и смещение арматуры а прессованном изделии 4) ускорение процесса отверждения изделия (в два-три раза) вследствие возможности повышения температуры прессования на 30—40° С 5) возможность благодаря быстрой пластификации материала в пресс-форме прессовать изделия более сложной конфигурации с более сложной арматурой и оформлять отверстия меньшего диаметра и большей высоты 6) улучшение качества изделий, их внешнего вида, а также диэлектрических показателей и некоторых физико-механических свойств.  [c.680]

Фенопласты — пресспорошки, волокниты и слоистые материалы — составляют большую группу термореактивных пластмасс отличаются относительно высокими физико-механическими свойствами, теплостойкостью и способностью заполнять пресс-форму. Повышенной ударной вязкостью обладают ФКП — пресспорошки, модифицированные каучуком и полимеризационными смолами повышенной химической стойкостью — фенолиты и декоррозиты. Для изготовления деталей применяют гранулы (таблетки).  [c.265]

Общие сведения (257). Основные физико-механические свойства пластмасс (258). Пластмассы в машиностроения (260). Применение пластмасс в машиностроении (268). Сравнительные физико-меха-пические свойства некоторых конструкционных материалов (270). Признаки, по которым можно определить вид пластмассы (270). Физико-механические показатели термопластических материалов (272). Механические свойства полиамидных смол отечественных марок (274). Антифрикционные свойства деталей из капрона в зависимости от вида термической обработки (274). Антифрикционные свойства капрона и металлических антифрикционных материалов (274). Примерное назначение термопластических материалов (275). Сравнительные физико-механические показатели материалов, применяемых для изготовления подшипников (278). Предельные нагрузки па подшипники из пластмасс (280). Физико-механические свойства термореактивных материалов (280). Примерное назначение прессовочных материалов (282). Физико-мёханические свойства конструкционных слоистых пластиков < (286). Фиаико-механические показатели стеклопластиков (288). Примерное назначение термореактивных материалов (288).  [c.536]

Общие сведения (301). Основные физико-механические свойства пластмасс (302). Пластмассы в машиностроении (304). Сравнительные физико-механические свойства некоторых конструкционных материалов (312). Признаки, по которым можно определить вид пластмассы (314). Эксплуатационные признаки пластмасс (316). Твердость и износостойкость пластмасс (317). Физико-меха-нические показатели термопластических материалов (318). Механические свойства полиамидных смол отечественных марок (320). Аитифрпкциопиые свойства деталей из капрона в зависимости от впда термической обработки (320). Антифрикционные свойства капрона п металлических антифрикционных материалов (320). Примерное назначение термопластических материалов (321). Физико-механические свойства термореактивных материалов (323). Физико-механические свойства конструкционных слоистых пластиков (324). Физико-мехаипческие показатели стеклопластиков (326). Примерное назначение термореактивных материалов (326).  [c.542]

Полиамиды — ароматические гетероциклические полимеры. Цепь макромолекул содержит имидные циклы и ароматические ядра, соединенные гибкими связями — О—, —СО—. В зависимости от структуры полиимиды могут быть термопластичными и термореактивными. Наибольшее практическое применение получили линейные полиимиды. Полиимиды отличаются высокими механическими и электроизоляционными свойствами, широким диапазоном рабочих температур (от —200 до 300 °С), стойкостью к радиации. На основе полиимидов получают пленки, по прочности не уступающие лавсановым. Полиимиды стойки к действию растворителей, масел, слабых кислот и оснований разрушаются при длительном воздействии кипящей воды и водяных паров могут длительно работать в глубоком вакууме при высоких температурах. Полиимидные прессовочные материалы имеют Ор = 90-н 130 МПа, = 200- 240 МПа а зр = 180- 230 МПа е = = 4н-20 % а = 604-120 кДж/м хорошо сопротивляются ползучести, стойки к истиранию, обладают низким коэффициентом трения.  [c.460]


Клеи и герметики могут быть в виде жидкостей, паст, замазок, пленок. В состав этих материалов входят следующие компоненты пленкообразующее вещество (в основном термореактивные смолы, каучуки), которое определяет адгезионные, когезионные свойства и основные физико-механические характеристики растворители (спирты, бензин и др.), создающие определенную вязкость пластификаторы для устранения усадочных явлений в пленке и повышения ее эластичности отвердители и катализаторы для перевода пленкообразующего вещества в термостабильное состояние наполнители в виде минеральных порошков, повышающих прочность соединения, уменьшающих усадку пленки. Для повышения термостойкости вводят порошки А1, А120а, ЗЮ , для повышения токо-проводимости — серебро, медь, никель, графит.  [c.495]

Листовые материалы, предназначенные для холодной штамповки, представляют собой пропитанные термопластичными смолами маты из коротких волокон или ткани из непрерывных волокон. Такие материалы аналогичны листовым формовочным материалам на основе коротких волокон, пропитанных термореактивной смолой, но обладают преимуществами по технологическим условиям формования, в частности длительность процесса формования меньше. В качестве примера можно привести наполненные стекловолокнами листовые материалы для холодной штамповки марок AZDEL, STX и т. д. Такой тип материалов на основе углеродных волокон пока находится в стадии разработки фирмами Торэ [21], иСС [22] и др. С точки зрения технологичности лучше использовать короткие волокна, однако материалы на основе тканей из непрерывных волокон Ьбладают лучшими механическими свойствами. В табл. 3. 13 приведены характеристики листовых материалов для холодной штамповки, полученных с использованием 8-ремизной ткани марки 6341 на основе углеродных волокон Торэка .  [c.83]

Композиционными материалами или композитами обычно назьтают многофазные сплошные среды, состоящие из армирующих элементов и соединяющего из связующего вещества (матрицы). В качестве армирующих элементов используют непрерывные или дискретные тонкие волокна, образованные из них нити, жгуты и ткани. Обладая высокой прочностью и жесткостью, волокна обеспечивают необходимые механические свойства композитов. В качестве матриц используют отвержденные или карбони-зованные термореактивные полимерные смолы, термопласты, металлические сплавы и керамику. Матрица обеспечивает заданную форму изделия, эффективную совместную работу волокон и в основном определяет технологические и теплофизические свойства композитов. Матрица может содержать наполнители в виде коротких волокон или частиц, вводимых для повышения ее механгтческих характеристик.  [c.273]

ASTM D2105—67. Механические продольные свойства при растяжении для армированных труб и тюбингов на основе термореактивных связуюш,их  [c.437]

В литературе имеется большое количество информации о механических свойствах наполненных порошками термореактивных пресс-композиций. Однако большинство этих данных часто эмпирические и работ по объяснению механизма действия дисперсных наполнителей очень мало. При растяжении или изгибе ненапол-ненные отвержденные полимеры разрушаются с малыми пластическими деформациями или вообще без них, причем относительная деформация при разрушении как правило не превышает 2—3%-При сжатии или сдвиге в них обычно проявляется предел текучести с развитием до разрушения достаточно больших пластических деформаций. Введение жестких дисперсных наполнителей в такие полимеры снижает разрушающее напряжение при растяжении и изгибе, увеличивает предел текучести при сжатии и сдвиге и повышает модуль упругости. Влияние таких наполнителей на поверхностную энергию разрушения имеет сложный характер и в отдельных случаях достигается ее резкое возрастание. В последнее время проведен ряд систематических исследований, которые и будут ниже рассмотрены подробнее.  [c.70]

В качестве матрицы полимерных фрикционных материалов было опробовано большое число полимеров, однако с точки зрения стоимости и удачного сочетания свойств феноло- и крезоло-формальдегидные термореактивные смолы находятся вне конкуренции. Фрикциолные и механические свойства этих материалов можно регулировать модифицированием фенолоформальдегидной смолы, использованием различного состава и структуры, смешением нескольких различных смол, изменением соотношения фено-  [c.396]


Смотреть страницы где упоминается термин Термореактивные Свойства механические : [c.165]    [c.118]    [c.106]    [c.197]    [c.382]   
Материалы в машиностроении Выбор и применение Том 5 (1969) -- [ c.78 , c.80 , c.82 , c.84 ]



ПОИСК



Вариант 14.3. Определение зависимости физико-механических свойств покрытия на основе термореактивных полимеров от режима оплавления полимера на поверхности металла

Пластмассы термореактивные - Механические свойства - Влияние температуры

Пластмассы термореактивные — Механические свойства

Пресс-порошки термореактивные — Механические свойства

Физико-механические в теплофизические свойства термореактивных пластмасс средней прочности (табл

Физико-механические и теплофизические свойства термопластичных и термореактивных пластмасс высокой прочности (табл

Физико-механические и теплофизические свойства термореактивных пластмасс низкой прочности (табл



© 2025 Mash-xxl.info Реклама на сайте