Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластмассы термореактивные — Механические свойства

В табл. 19.6 приведены физико-механические свойства некоторых термореактивных пластмасс с волокнистыми наполнителями.  [c.358]

Физико-механические свойства термореактивных пластмасс  [c.167]

Термореактивные пластмассы, содержащие наполнители, изменяют свои свойства в зависимости от состава смолы, способа отверждения, типа отвердителя, вида и содержания наполнителя. Несмотря на большое влияние наполнителей на механические свойства пластмассы, можно наблюдать, что температурная зави-  [c.28]


Физико-механические свойства пластмасс, применяемых для изготовления деталей машин, приведены в т. 6 наиболее употребительный материал для зубчатых колес — термопласты на основе полиамидных смол типа капрона значительно реже для этой цели используются термореактивные слоистые пластмассы (текстолит и др.) вследствие их необратимости, более высокой стоимости, меньшей прочности и сложности обработки.  [c.411]

Дефектность значительно влияет на прочность при межслойном сдвиге и продольном сжатии (рнс. 219). Механические свойства стеклопластиков зависят от угла между направлением растягивающей силы и направлением армирующих волокон (рис. 220). Усилить материал в различных направлениях можно соответствующим расположением наполнителя (трубы, цилиндры, получаемые способом намотки). Физико-механические свойства термореактивных пластмасс даны в табл. 47.  [c.467]

Комплекс позволяет подобрать при проектировании деталей материал или группу материалов, в наибольшей степени удовлетворяющих условиям работы. Подбор может осуществляться по заданным механическим характеристикам или по функциональному назначению изделия. Важнейшей составляющей комплекса является база данных, размещенная в 20 файлах, каждый из которых объединяет определенную группу материалов, например, алюминиевые сплавы, коррозионностойкие стали, термореактивные пластмассы и т.д. База данных открыта для модификаций и дополнений. Материалы, включенные в базу данных, содержат марочные обозначения, химический состав сплавов, некоторые механические свойства, характер и режимы термической обработки.  [c.5]

Фрезерование 918 -- Физико-механические свойства 295 Пластмассы термореактивные — Механические свойства 301  [c.1061]

Фаолит представляет собой термореактивную кислотоупорную пластмассу, получаемую на основе феноло-формальдегидной резольной смолы (полимер класса Б) и кислотостойкого наполнителя (асбест с графитом или кварцевым песком или только асбест). Варьируя видом наполнителя и количественным соотношением между полимером и наполнителем, можно получать изделия, различные по физико-механическим свойствам и кислотостойкости.  [c.643]

Одним из достоинств термореактивных масс является то, что их механические свойства в меньшей степени зависят от изменения температуры окружающей среды, чем термопластических пластмасс (фиг. 1).  [c.9]

ГЯ. Характеристика физико-механических свойств и лежим прессования термореактивных пластмасс  [c.482]

Основные физико-механические свойства композиционных термореактивных пластмасс приведены в табл. 44.  [c.604]


Физико-механические свойства термореактивных пластмасс (с органическими наполнителями)  [c.423]

Идеализированная модель материала, принятая в механике сплошных сред, естественно, не отражает многих особенностей строения реальных тeJ . Поэтому результаты теоретических расчетов в большей или меньшей степени не совпадают с экспериментальными данными. Больш ие отклонения наблюдаются в том случае, когда для материала характерно наличие макродефектов — включений, пор и т. п,, приводящих к различию физических и механических свойств отдельных частиц. К таким материалам с несовершенной структурой прежде всего относятся большинство горных пород и бетонов, отдельные металлокерамические композиции и чугуны, некоторые термореактивные пластмассы и др.  [c.134]

Такие высокие прочностные свойства текстолита позволяют использовать подшипники при ударных давлениях до 4000 кгс/см , например в сталепрокатных станах взамен бронзовых подшипников. Подробные физико-механические свойства текстолита приведены в справочной литературе [34]. Прочностные свойства текстолитовые подшипники сохраняют при температурах от —40 до -f 100 °С, а в случае временных воздействий — до 175— 190 °С. Это объясняется тем, что термореактивные пластмассы, к которым относится и текстолит, под действием температур выше 200 °С разлагаются, не переходя в вязкотекучее состояние. Вследствие этого высокие температуры не вызывают деформации материала (низкая хладотекучесть).  [c.83]

Слоистые пластмассы — материалы, армированные параллельно расположенными слоями листового наполнителя бумаги, ткани и т. п. (табл. 22). Наибольшую прочность имеют стеклотекстолиты, наиболее высокую теплостойкость — асботекстолиты. В качестве связующего применяют термореактивные полимеры — фенолоформальдегидные, эпоксидные, кремнийорганические, полиэфирные и другие смолы. Наиболее распространенными и дешевыми являются фенолоформальдегидные смолы. Они имеют хорошую адгезию к большинству наполнителей, термостойки, но требуют сравнительно высоких давлений при формировании изделий. Кремнийорганические смолы имеют хорошую водостойкость, термостойкость, обеспечивают повышенные диэлектрические свойства их высокий коэффициент линейного расширения снижает механические свойства материала.  [c.819]

Физико-механические свойства типичных композиционных термореактивных пластмасс приведены в табл. 23.  [c.824]

Термореактивные пластмассы с волокнистым наполнителем (волок-ниты) (табл. 80. 81) содержат в своем составе хлопковое, асбестовое, древесное или стеклянное волокно, повышающее их механические свойства. Прочность волокнитов при работе в условиях повышенных температур падает.  [c.228]

Физико-механические свойства термореактивных пластмасс с волокнистым наполнителем  [c.231]

Приводимые в работах [7], [47], [108] результаты исследований влияния температуры испытаний и скорости нагружения на механические свойства термореактивных пластмасс при деформировании показали, что во всех случаях пластические деформации отсутствовали и имели место только упругие деформации.  [c.10]

Справочные материалы. 1. Физико-механические свойства термореактивных пластмасс (табл. 65).  [c.177]

НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ 100. Характеристика физико-механических свойств и режим прессования термореактивных пластмасс  [c.834]

Для улучшения физико-механических свойств пластмасс, в частности прочности к динамическим и статическим нагрузкам, твердости и т. д., а также уменьшения усадки при отверждении термореактивных полимеров в них добавляется наполнитель. В качестве наполнителей используют волокнистые материалы (стеклоткань, стекловолокно, асбестовое волокно, бумага и т. д.) и порошкообразные вещества (кварцевая, асбестовая и древесная мука и т. д.). Наполнители в основном используются в термореактивных полимерах.  [c.134]

Влияние температуры. Зависимость механических свойств пластмасс от температуры показана на фиг. И. Как у термореактивных пластмасс, так и у термопластов прочность падает с повышением температуры и возрастает с понижением.  [c.226]


Детали резьбовых соединений в зависимости от условий работы изготовляют из пластмасс с различными физико-механическими свойствами. Особый интерес представляют детали из жестких термореактивных пластмасс, обладающие в соединениях болт—гайка (особенно если болт стальной) значительной нагрузочной опособ-  [c.43]

Физико-механические свойства и режимы компрессионного прессования термореактивных пластмасс приводятся в табл. 10 и 11.  [c.57]

Существует множество неметаллических материалов, которые успешно могут заменить металлы и их сплавы. Все более широкое применение получают различные виды полимеров (пластмасс), которые благодаря своим особым физическим и механическим свойствам позволяют использовать их для литья под давлением, прессования, формовки из листов, сварки, склеивания, наплавления и других технологических процессов изготовления деталей. Полимерные материалы (пластмассы) подразделяются на две группы термопластичные и термореактивные.  [c.228]

Материал термореактивный прессовочный АГ-4В. Этот материал благодаря хаотическому наполнению пластмассы путанным стекловолокном обладает изотропными механическими свойствами. Он имеет сравнительно высокую теплостойкость, повышенные диэлектрические характеристики, значительную механическую прочность. Применяется АГ-4В для изготовления методом прессования деталей конструкционного и электротехнического назначения повышенной прочности, работающих при температуре до 200° С (473° К).  [c.25]

Как термореактивные, так и термопластические пластмассы имеют множество различных названий и марок, отличающихся по своим физическим, механическим, технологическим и эксплуатационным свойствам.  [c.189]

У большинства термореактивных смол изменения динамических величин при повышении температуры не так велики, как у термопластов, хотя в области размягчения тоже происходит у них снижение G или Е и повышение декремента затухания [3]. О значении показателей динамических свойств пластмасс, полученных измерением при действии слабой механической переменной нагрузки, будет сказано ниже.  [c.58]

Общие сведения (257). Основные физико-механические свойства пластмасс (258). Пластмассы в машиностроения (260). Применение пластмасс в машиностроении (268). Сравнительные физико-меха-пические свойства некоторых конструкционных материалов (270). Признаки, по которым можно определить вид пластмассы (270). Физико-механические показатели термопластических материалов (272). Механические свойства полиамидных смол отечественных марок (274). Антифрикционные свойства деталей из капрона в зависимости от вида термической обработки (274). Антифрикционные свойства капрона и металлических антифрикционных материалов (274). Примерное назначение термопластических материалов (275). Сравнительные физико-механические показатели материалов, применяемых для изготовления подшипников (278). Предельные нагрузки па подшипники из пластмасс (280). Физико-механические свойства термореактивных материалов (280). Примерное назначение прессовочных материалов (282). Физико-мёханические свойства конструкционных слоистых пластиков < (286). Фиаико-механические показатели стеклопластиков (288). Примерное назначение термореактивных материалов (288).  [c.536]

Неметаллические подшинниковые материалы. Пластические массы — термореактивные типа текстолита и термопластичные, в основном полиамидные, широко используют для изготовления втулок и вкладышей подшипников их физико-механические свойства приведены в табл. 19. Коэффициент теплопроводности пластмасс в 200 раз меньше, чем коэффициент теплопроводности стали, что затрудняет теплоотвод из рабочей зоны подшипника. Для уменьшения нагрева вкладышей следует изготовлять их с малой толщиной стенок или же применять облицовку на металлической основе из тонкого слоя полиамидной смолы.  [c.423]

При решении вопроса о применении отдельных видов пластиков следует учитывать их специфические особенности. Так например, слоистые пластики (текстолит, гетинакс, дельта-древесина или лигнофоль и др.) анизотропны, т. е. имеют различные свойства в различных направлениях, зависящие главным образом от расположения слоёв и соотношения наполнителя и смолы в готовом материале. Высокое сопротивление воздшштвию вибрационных нагрузок хотя и выгодно отличает пластмассы от металлов, однако повышенная хрупкость (и не всегда достаточная прочность) прессованных деталей из порошкообразных пластмасс ограничивает их применение в силовых элементах конструкций. Термореактивные, а в особенности термопластичные материалы подвержены пластической деформации (текучести на холоду) под влиянием постоянно действующих нагрузок физико-механические свойства большинства пластиков сильно зависят от температуры и влаасности среды, в которых должен работать материал размеры деталей из пластмасс могут изменяться не только под влиянием постоянно действующих нагрузок и окружающей среды, но и в результате изменений, происходящих в процессе старения.  [c.293]

Фенопласты — пресспорошки, волокниты и слоистые материалы — составляют большую группу термореактивных пластмасс отличаются относительно высокими физико-механическими свойствами, теплостойкостью и способностью заполнять пресс-форму. Повышенной ударной вязкостью обладают ФКП — пресспорошки, модифицированные каучуком и полимеризационными смолами повышенной химической стойкостью — фенолиты и декоррозиты. Для изготовления деталей применяют гранулы (таблетки).  [c.265]

Общие сведения (301). Основные физико-механические свойства пластмасс (302). Пластмассы в машиностроении (304). Сравнительные физико-механические свойства некоторых конструкционных материалов (312). Признаки, по которым можно определить вид пластмассы (314). Эксплуатационные признаки пластмасс (316). Твердость и износостойкость пластмасс (317). Физико-меха-нические показатели термопластических материалов (318). Механические свойства полиамидных смол отечественных марок (320). Аитифрпкциопиые свойства деталей из капрона в зависимости от впда термической обработки (320). Антифрикционные свойства капрона п металлических антифрикционных материалов (320). Примерное назначение термопластических материалов (321). Физико-механические свойства термореактивных материалов (323). Физико-механические свойства конструкционных слоистых пластиков (324). Физико-мехаипческие показатели стеклопластиков (326). Примерное назначение термореактивных материалов (326).  [c.542]


Преимуществом наполненных термореактивных пластмасс является большал стабильность механических свойств и относительно малая зависимость от температуры, скорости деформирования и длительности действия нагрузки. Они более надежны, чем термопласты. При испытаниях на растяжение материалы разрушаются без пластического течения и образования шейки (см. рис. 13.15, б). Верхняя граница рабочих температур реактопластов определяется термической устойчивостью полимера или наполнителя (меньшей из двух). Несмотря на понижение прочности и жесткости при нагреве, термореактивные пластмассы имеют лучшую несущую способность в рабочем интервале температур, и допустимые напряжения (15-40 МПа) для них выше, чем для термопластов. Важными преимуществами термореактивных пластмасс являются высокие удельная жесткость Е/ рд) и удельная прочность а рд). По этим показателям механических свойств реактопласты со стеклянным волокном или тканями превосходят многие стали, сплавы титана и сплавы алюминия. Термореактивные порошковые пластмассы наиболее однородны по свойствам. Такие пластмассы хорошо прессуются и применяются для наиболее сложных по форме изделий. Недостаток порошковых пластмасс — пониженная ударнал вязкость (табл. 13.9).  [c.393]

Многообразие применяемых термореактивных пластмасс не представляет возможности раскрыть в одной книге все их физико-механические свойства и проблемы их механической обработки, поэтому рассмотрим лишь такие волокнистые ВКПМ, как стекло-, органо-, боро-, углепластики, а также их композиции, отличающиеся сочетанием различных волокон.  [c.8]

Новая классификация. В силу некоторой сложности гостовской терминологии в 1959 г. НИИПМ была предложена новая классификация с сохранениен-практически сложившейся терминологии пластмасс. По этой классификации сохраняются четыре класса, принятые по ГОСТу. Кроме того, пластмассы делятся на две основные группы термореактивные и термопластичные и на подгруппы пс физико-механическим свойствам.  [c.186]

Изделия из пластмасс получают путем прессования, литья под давлениел , штамповки листовых пластмасс и другими способами. Прессование — наиболее широко распространенный способ получения изделий из термореактивных пластмасс в пресс-формах, предварительно нагретых до температуры 130—150 °С. В качестве основного оборудования для прессования пластмасс обычно применяют гидравлические или механические прессы. Пластмассы легко поддаются механической обработке. Особенности обработки пластмасс определяются их специфическими свойствами.  [c.120]

Малая плотность, демпфирующая способность, стойкость к агрессивным средам, высокие электро-, тепло-, звукоизоляционные и фрикционные свой- ства, высокая удельная прочность, простота переработки в изделия и другие ценные физико-механические свойства способствуют широкому применению пластмасс в машиностроенпи. По поведению при нагревании пластмассы делят на две основные группы термореактивные (реактопласты) и термопластические (термопласты). Реактопласты при нагревании вначале переходят в вязко-гекучее состояние, а затем превращаются в необратимые, неплавкие и нерастворимые вещества.  [c.150]

До недавнего времени термопласты имели ограниченное применение (преимущественно — в высокочастотной технике) и занимали небольшой объем в мировом производстве пластмасс. В последние годы области применения термопластов расширились и рост их производства приобрел значительно более высокие темпы. Это связано с появлением новых типов термопластичных материалов, которые по нагревостойкости до тигли или превзошли термореактивные пластмассы на основе фенолформальдегидных смол. Важное значение имеют механические свойства и химическая стабильность некоторых термопластов, их высокие электроизолируюи и свойства и технологичность.  [c.100]

Пластмассы, применяемые для изготовления деталей радио-и электронной аппаратуры, подразделяются на термореактивные и термопластичные. Физические и механические свойства пластмасс приведены в табл. 7.15. Термореактивные пластмассы обладают особенностью отверждаться при нагревании. Процесс отверждения у этих пластмасс необратим, т. е. при повторном нагревании они не размягчаются. Основами этих пластмасс являются фенольные, фенолоанилиновые, фенолформальдегидные, мочевиноформальдегид-ные смолы.  [c.127]

Из термореактивных пластмасс наибольшее распространение в ремонтном производстве получили эпоксидные смолы ЭД-20 и ЭД-16. Смола представляет собой вязкую жидкость светло-коричневого цвета и является основным связующим веществом в различных композициях. Для перехода смолы из жидкого состояния в неплавкое и нерастворимое состояние в смолу вводятся отверди-тели. В качестве отвердителей применяются полиэтиленполиамины, представляющие собой вязкую маслянистую жидкость различных оттенков от светло-желтого до темно-бурого, малеииовый и фта-лиевый ангидриды и др. Температура смолы в момент отверждения должна быть не выше 20 5° С. Применяются холодное и горячее отверждения. При комнатной температуре полное отверждение заканчивается через 200—280 ч, при температуре же 80° С оно наступает через 6 ч [581. По этой причине, а также для повышения физико-механических свойств композиций холодного отверждения рекомендуется прогрев их до температуры 70—80° С. В зависимо- сти от применяемых отвердителей горячее отверледение произвс/ дится при различной температуре. Так, например, при использо-  [c.303]

Специфические свойства той или иной смолы (олигомера), входящей в состав термореактивных пластмасс, определяют не только их рецептуру (необходимость введения отвердителей, количественное содержание того или иного наполнителя и т. п.) и его технологические характеристики (текучесть, параметры прессования — температура, давление, время, величину технологической усадки, количество выделяющихся летучих), но и основные свойства готовой детали (теплостойкость, формо-и размероизменяемость во времени и под действием различных внешних факторов, механическую прочность, химическую стойкость, электроизоляционные свойства и т. п.). В состав большинства пластических масс, кроме полимерного связующего, могут входить отвердители, пластификаторы, наполнители, красители, порообразо-ватели, смазывающие вещества и другие добавки.  [c.12]


Смотреть страницы где упоминается термин Пластмассы термореактивные — Механические свойства : [c.165]    [c.216]    [c.204]   
Справочник машиностроителя Том 2 (1952) -- [ c.30 , c.1062 ]



ПОИСК



Пластмасса термореактивная

Пластмассы Свойства

Пластмассы термореактивные - Механические свойства - Влияние температуры

Пластмассы термореактивные Свойства

Пластмассы, механические свойства

Термореактивные Свойства механические

Физико-механические в теплофизические свойства термореактивных пластмасс средней прочности (табл

Физико-механические и теплофизические свойства термопластичных и термореактивных пластмасс высокой прочности (табл

Физико-механические и теплофизические свойства термореактивных пластмасс низкой прочности (табл



© 2025 Mash-xxl.info Реклама на сайте