Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потери в паровой турбине и ее

ПОТЕРИ В ПАРОВОЙ ТУРБИНЕ И ЕЕ К. П. Д.  [c.104]

Теплота, сообщаемая воздуху при сжатии в турбовоздуходувке, используется в паровом котле и учитывается его показателями. Поэтому расход теплоты на турбовоздуходувку определяют аналогично расходу теплоты на турбопривод питательных насосов, т. е. учитывают потери теплоты в конденсаторе и тепловой эквивалент механических потерь в приводной турбине и воздуходувке.  [c.280]


В первых ступенях паровых турбин 8 0,15, в газовых турбинах обычно е= 1. Потери на трение и вентиляцию в паровых турбинах значительны, особенно в первых ступенях, где плотность р пара велика. Так, в первой (регулирующей) ступени турбины К-800-240 мощностью 800 МВт 4т в =0,015, а в последующих 4т.в = 0,001. В газовых турбинах благодаря сравнительно малой плотности газа эти потери меньше. Затраты мощности (в кВт) на трение и вентиляцию можно оценить по уточненной полу эмпирической формуле А. Стодолы  [c.186]

Рассмотрим потери энергии в реальной паросиловой установке, работающей по циклу Ренкина. При этом будем считать, что в качестве двигателя используется паровая турбина и совершаемая ею работа затрачивается на привод электрического генератора. Такая схема характерна для простейшей паротурбинной электрической станции.  [c.211]

Для повышения температуры питательной воды, поступающей в паровой котел, ее можно предварительно нагреть, используя для этой цели промежуточные отборы пара от паровой турбины. На рис. 1 температура воды, поступающей в паровой котел, в этом случае повысится и будет соответствовать точке 3. При этом тепловая энергия отборного пара, прошедшего через часть проточной части паровой турбины и совершившего соответствующую механическую работу, не теряется из установки с охлаждающей водой в конденсаторе, а используется для подогрева питательной воды, снижая тем самым удельный расход топлива. Таким образом, в паросиловых установках часть пара совершает цикл Ренкина, в котором для превращения в работу тепла t —12 нужно затратить в паровом котле тепло, равное t l — ig. Пар из отборов работает по теплофикационному циклу, в котором теплота парообразования возвращается в паровой котел с подогретой питательной водой. В паровом котле остается восполнить лишь тепло, которое израсходовано отбираемым паром на механическую работу в турбине. В результате термический к. п. д. паросиловой установки повышается. При проектировании установки определяется оптимальная температура питательной воды с учетом параметров пара, величины потерь тепла с уходящими из котла газами и соотношения стоимости топлива и поверхностей нагрева котельного агрегата,  [c.7]


Высокий коэффициент использования топлива в турбоустановке с противодавлением вовсе не означает, что КПД паровой турбины не играет никакой роли вследствие использования потерянного в турбине тепла в ПСВ. Недовыработка электрической мощности в рассматриваемой турбине означает ее производство на другой, конденсационной электростанции, в которой имеются большие потери тепла в конденсаторе и, следовательно, менее экономичной.  [c.30]

В этом уравнении все величины, за исключением и е, известны из теплового расчета. Поэтому, задаваясь е, можно определить или, задаваясь 1х, определить е. В газовых турбинах обычно е = 1. Слишком малые значения и е в паровых турбинах ведут к большим потерям в соплах. Для активной ступени рекомендуется выполнять 10 мм, а е 0,1-7-0,15.  [c.168]

Паросиловые установки. В отличие от цикла Ренкина, экономичность которого определяется по отношению к теплоте, затраченной на получение пара, для паросиловой установки в целом она должна оцениваться по отношению к химической энергии сжигаемого в топке парового котла топлива. В паросиловой установке необходимо учитывать все потери, имеющие место в котлоагрегате, паровой турбине и прочих ее элементах.  [c.333]

В паровой турбине потери обусловливаются главным образом трением пара в проточной ее части и при конденсации.  [c.333]

Рассмотрение действительного двигателя— паровой турбины показывает следующее. Рабочее тело в паровой турбине движется с большими скоростями и соприкасается с поверхностями ее деталей вследствие этого как внутри самого рабочего тела, так и при соприкосновении его с металлическими поверхностями возникает трение. На преодоление трения тратится часть полезной энергии, и поэтому работа 1 кг пара будет меньше, чем работа идеальной (без потерь) турбины Шо=11— 2 (рис. 6-43) если энтальпию пара в конце действительного расширения (точка 2д) обозначить г га, то внутренняя работа 1 кг пара с учетом потерь на трение (ее обозначают Wi) составит  [c.134]

Для того чтобы разобраться в способах организации внутрикотловых процессов, необходимо рассмотреть, какие примеси вносятся в котел питательной водой. В первую очередь это соединения натрия, кальция и магния, кремнекисло-та и органические примеси, т. е. вещества, составляющие основу солевого состава природных вод. Эти примеси проникают в питательную воду котлов через неплотности в конденсаторах турбин, охлаждаемых природными водами, или с добавочной водой, восполняющей потери пара и конденсата в основном цикле. Затем в питательную воду попадают продукты коррозии конструкционных материалов, т. е. главным образом окислы железа, меди и цинка. Медь, цинк, а также следы олова и свинца поступают вследствие коррозии латунных трубок конденсаторов, подогревателей низкого давления (ПНД) и сетевых подогревателей (бойлеров). Принос окислов железа и незначительных количеств хрома, никеля, марганца, иногда ванадия и других легирующих добавок обусловлен коррозией основного оборудования электростанции — металла котла, пароперегревателя, трубопроводов, элементов паровой турбины. Значительное количество окислов железа доставляется конденсатами, возвращаемыми от производственных потребителей пара. Вследствие большой протяженности конденсатных магистралей этот конденсат обычно содержит много окислов железа, а иногда и другие примеси, обусловленные технологическими процессами, при которых использовался пар и получался конденсат.  [c.167]

Если перед турбиной низкого давления вместо камеры сгорания установить ВПГ (исключив регенератор ГТУ), то избыток воздуха в турбине низкого давления уменьшится, что позволит повысить параметры пара, т. е. повысить к. п. д. паровой ступени цикла. Из уравнений (8)—(И) следует, что уменьшение избытка воздуха перед турбиной низкого давления повысит мощность газовой ступени и ее к. п. д. При сжигании дополнительного топлива в котле за турбиной низкого давления прирост к. п. д. ПГУ будет меньшим только за счет повышения к. п. д. паровой ступени и уменьшения потерь с уходящими газами [93].  [c.31]


В то время паровые турбины работали в основном на влажном паре, и неточности в определении расхода и потерь энергии приводили к существенным отклонениям от гарантий, а возросшие требования промышленности побуждали к уточнению расчетов. Проблема влажного пара привлекла внимание А. Стодолы [107]. Для разъяснения наблюдаемых явлений он выполнил теоретические исследования и поставил опыты. В соответствии с теорией Стодолы для сопел увеличение коэффициента расхода насыщенного пара объяснялось отклонением процесса расширения от равновесного. Процесс конденсации запаздывал, и температура пара оказывалась ниже равновесной, т. е. наступало переохлаждение пара. С этим явлением также были связаны дополнительные потери энергии, которые необходимо было учитывать в расчетах.  [c.7]

Образование и течение пленок на поверхностях лопаток играют важную роль в рабочем процессе паровых турбин. При сходе с кромок лопаток пленки дробятся на крупные капли, наиболее опасные с точки зрения эрозии лопаточного материала. Пленка на поверхности лопаток изменяет профильные и концевые потери. С ее образованием и характером течения связаны методы влагоудаления.  [c.64]

Последняя ступень прошла всю последовательность аэродинамических испытаний, начиная с продувок решеток профилей. Особую ценность имели ее испытания в модельной пятиступенчатой паровой турбине ЦКТИ (масштаб 1/3), которые выявили газодинамику потока и влияние влажности на потери энергии.  [c.74]

Таким образом, эта потеря невелика и мало зависит от параметров пара, несколько снижаясь с их увеличением. Надо, однако, заметить, что в современных турбинах уже трудно найти возмож" ность крупного выигрыша в экономичности поэтому даже небольшое ее повышение без усложнения конструкции турбины не должно оставаться без внимания. Тем более, что при неудачном исполнении парового тракта потеря давления может оказаться намного больше 5%.  [c.33]

Е. Тепловые потери (при наличии охлаждения лопаток) и потери от влажности (в ступенях паровых турбин).  [c.163]

Вторичные течения в решетках паровых турбин были экспериментально исследованы Нью [124] и М. Е. Дейчем [13]. В указанных работах был установлен винтовой характер движения газа вблизи концов лопаток, обнаружены зоны с повышенными потерями и пониженным статическим давлением у выпуклой стороны лопатки и показана независимость вторичных явлений от относительной длины  [c.445]

Дымососы и дутьевые вентиляторы имеют привод от электродвигателя, воздуходувки — от электродвигателя или турбины. Мощность двигателя выбирают с учетом инерции (махового момента) ротора тягодутьевой машины при пуске ее. В расход энергии на приводной двигатель входят потери в нем, учитываемые его КПД. Дымососы и дутьевые вентиляторы при номинальной нагрузке паровых котлов должны иметь КПД не ниже 90 % максимального его значения.  [c.185]

Для компенсации потерь давления по газовоздушному тракту системы газификации и очистки устанавливается подкачивающий (бус-терный) компрессор Б/С. Охлаждение уходящих газов ПГУ осуществляется частью питательной воды в трехступенчатом водяном экономайзере Ж- Остальная ее часть подогревается в регенеративных подогревателях паровой турбины.  [c.25]

К внутренним относятся потери в клапанах св ежего пара, перепускных клапанах, в соплах, на ]забочих лопатках, с выходной скоростью, на трение диска в паре и др. К внешним потерям относятся механические потер1И от преодоления трения в опорных и упорных подшипниках, а также потери от утечки пара через концевые лабиринтовые уплотнения. Потери тепла в паровой турбине учитываются ее коэффициентом полезного действия. Различают следующие коэффициенты полезного действия турбоагрегата.  [c.126]

В действительных условиях идеаль- ный цикл Ренкина неосуществим из-за необратимости составляющих его процессов и из-за наличия ряда тепловых потерь. Значительные потери тепла имеют место при сжигании топлива в котельном агрегате и при получении в нем пара из питательной воды. Потерями сопровождаются превращение тепла в работу в паровой Турбине и последующее преобразование работы в электроэнергию. Потери тепла имеют место в механической части турбины, электрического генератора и насоса, а также при транспорте теплоносителя по соединительным трубопроводам. В результате степень использования подведенного к котлоагрегату тепла (т. е. теплоты сожженного топлива) на лектростан-циях ниже, чем то может быть определено для идеального термодинамического цикла, в котором единственной потерей тепла является только то количество, которое передано холодильнику.  [c.15]

Положение кардинально изменилось лишь тогда, когда в качестве первичных двигателей стали применять быстроходные паровые турбины и на их основе возник совершенно новый тип синхронных генераторов. В 1884 г. Ч. Парсонс изобрел реактивную паровую турбину, предназначенную специально для электростанции. Для того чтобы этот быстроходный двигатель насадить без промежуточного редуктора на один вал с электрическим генератором, имевшим значительно меньшую оптимальную скорость, Парсонс разработал многоступенчатую турбину. Дальнейшее совершенствование турбины Парсонса шло неразрывно с развитием генераторов возник единый агрегат — турбогенератор [2, с. 60—62]. Некоторое время создавались турбогенераторы постоянного тока, предельная мощность которых достигла 2000 кВт при 1500 об/мин. Постепенно они были вытеснены турбогенераторами, вырабатывавшими переменный ток. Большие скорости вращения сказались на конструктивном выполнении обмоток генераторов первоначально роторы строили с явно выраженными полюсами, но возросшая механическая нагрузка и большие потери на трение о воздух заставили перейти к распределенной обмотке возбуждения. Уже в 90-х годах турбина Парсонса получила широкое распространение в Англии, а ее применение на Европейском континенте несколько задержалось, несмотря на то что в 1895 г. фирма Westinghous , а годом позже фирма Brown, Boveri С° прибрели право на строительство турбин Парсонса [36, с. 62]. Перелом произошел в 1899 г., когда Парсонс выполнил заказ на две крупные по тому времени турбины для приво-  [c.81]


Каждая печь, в которой плавятся материалы с высокой температурой плавления, должна иметь подогреватель воздуха. Это относится и к топкам с жидким шлакоуда-лением, в которых плавится зола сжигаемого угля.. Подогреванием воздуха для горения повышается уровень температуры факела в плавильном пространстве топки, т. е. достигается тот же результат, что и при повышении теплоты сгорания сжигаемого угля. Подогрев воздуха для горения облегчает также воспламенение топлива, поступающего в топку, так как подогретая смесь пыли и воздуха требует для своего нагревания до температуры зажигания уже меньше тепла. Воздух для горения подогревается в большинстве случаев продуктами сгорания, которые выходят из котла, благодаря чему снижается также потеря тепла с уходящими газами. У паровых подогревателей воздуха используется тепло, которое иначе было бы потеряно в конденсаторе турбины.  [c.264]

Критическое отношение давлений, определяемое как отношение статического давления к давлению полного торможения на входе в канал или сопло, с ростом потерь уменьшается и увеличивается с ростом степени неравновесности. Однако основную роль играют потери кинетической энергии, а не степень неравновесности, так клк последняя величина при отношении давлений, равном Ёкр, и предельно нераБНоьес-ном процессе снижается лишь на. 3—4%. Термодинамическая (равновесная) теория, как это нетрудно видеть из формулы (1-7,3), при замене, fei на /гд дает увеличение значения Ёкл с ростом влажности, причем при переходе через линию х= значение t , ,. показатель адиабаты п и скорость звука адц меняются скачкообразно. При предельно неравновесном процессе расширения Ек,, остается равным е-кр для перегретого пара. Важно отметить, что формулы (1-72) и (1-73) получены для паровой фазы, когда влияние жи,дкой фазы учитывается только через степень неравновесности у, и, главное, через коэффициент суммарных 1 о" рь L Такой подход при определении Екр для среды в целом будет неверным или же весьма приближенным. Дело в том, что определение скоростей через располагае.мые теплоперепады (рис. 1-5) может привести к весьма разнообразным значениям коэффицне1Гтов потерь, в том числе и меньшим нуля. Это может иметь место, если, например, скорость паровой фазы определяется по предельно неравновесному процессу (Hoi), а теоретическая скорость —по равновесному процессу Нан (для среды в целом). Аналогичные расхождения возникнут также при расчетах расходных характеристик решеток и экономичности ступеней турбин.  [c.18]

Расчет проточной части паровой турбины (и системы регенерации при ее наличии) проводят одновременно с расчетом сетевой подогревательной установки. При проведении предварительного расчета тепловой схемы ПГУ-ТЭЦ задают график отопительной нагрузки, расхода и температуры сетевой воды. В зависимости от коэффициента теплофикации и схемы ТЭЦ принимают нужное количество ступеней подогрева сетевой воды (обычно не более 4). Необходимую тепловую нагрузку распределяют между подогревателями сетевой воды, определяют температуры на выходе из каждого подогревателя. С учетом недогрева в подогревателях и потерь давления в паропроводах рассчитывают значения давления пара в отборах ПТ для тех ступеней, которые питаются отборным паром. При необходимости находят расход пара через редукционноохладительное устройство и количество впрыскиваемой воды. После этого рассчитывают и строят процесс расширения пара (в h, j-координатах) для каждого отсека (под отсеком подразумевают группу ступеней с одинаковым расходом пара). При этом начальные параметры пара берут из расчета КУ с учетом потерь в трубопроводах, а давление в конденсаторе принимают или рассчитывают (см. гл. 8). Дальнейший расчет процесса хорошо известен и описан 404  [c.404]

Продувка влечет за собой одновременно тепловую потерю и потерю рабочего тела. Однако следует иметь в виду, что уменьшение величины продувки вызывает увеличение солесодер-жания котловой водьп до предельного. При зтО М наблюдается значительное увлажнение пара, вызванное образованием пены с нарушением границы между водяным и паровым пространствами в барабане котла. Увлажнение пара, т. е. ухудшение его качества, нарушает режим работы пароперегревателя и сопровождается выносом солей с влагой в пароперегреватель и в паровую турбину.  [c.99]

Потери в турбине. В паровой турбине кроме рассмотренных потерь с выходной скоростью отработавшего пара есть noiepn, которые уменьшают полезную работу. Этн потери делят на внутрен1П е и на внешние.  [c.228]

Подвод теплоты осуществляется на изобаре р — линия 5—4—6—1 (рис. 11.5), причем на участке 5—4 вода нагревается до температуры насыщения, на участке 4—6 происходит процесс парообразования и на участке 6—1 — процесс перегрева пара. Хотя процесс расширения пара осуществляется до того же давления р2, что и при рассмотрении циклов Карно и Ренкина насыщенного пара, точка 2 при расширении перегретого пара расположена блид<е к пограничной линии х = 1, чем в случае расширения до давления насыщенного пара. Это значит, что в конце процесса расширения перегретый пар имеет большую сухость, или, что то же, содержит меньше влаги при прохождении через проточную часть паровой турбины. В результате сокращаются необратимые потери на трение в процессе расширения пара, повышается внутренний относительный к. п. д. турбины. Цикл Ренкина на перегретом паре является основным циклом современных теплоэнергетических установок.  [c.166]

Продувки котла по времени действия могут быть периодические и непрерывные. Периодические продувки проводят из нижних барабанов и коллекторов котлов, непрерывную продувку осуществляют из барабана котла (при двухбарабанных котлах — из верхнего). Вода непрерывной продувки подается в расширитель ( /, рис. 19-1), в котором ее давление падает до атмосферного. Образовавшийся пар поступает в деаэратор, где его тепло используется, а оставшаяся в расширителе вода по пути в сливной колодец часто пропускается через теплообменник, где используется еще часть ее тепла. Так как полностью избежать накипе-образования только улучшением качества питательной воды не удается, в котловую воду вводят соли фосфорной кислоты (фосфатирование), благодаря чему соли кальция и магния выделяются не в форме накипи, а в виде подвижного шлама, удаляемого из котла продувкой. Поскольку прямоточные котлы не могут работать с продувкой, их питают конденсатом от паровых турбин, а потери пара и конденсата возмещают дистиллированной водой, получаемой в испарителях, или химически обессоленной водой. Удаление из прямоточного котла осевших солей осуществляют в период остановки его на ремонт водной или кислотной промывкой его.  [c.321]

Тепловые аккумуляторы — третий вид аккумуляторов, предложенный Ветчинкиным и Уфимцевым,— представляют собой большие цистерны с прочными и хорошо теплоизолированными стенками. В них находится вода, нагреваемая злектроподогревателями до высокой температуры. Тепловая энергия, запасенная в этих цистернах, может использоваться и для отопительных и для энергетических целей снижая давление, превращая воду в пар, можно потом заставлять ее работать в паровых машинах или турбинах. По расчетам авторов предложения, тепловые аккумуляторы могут оказаться в некоторых случаях в 300—500 раз экономичнее, чем электрические той же емкости. Общим недостатком всех этих проектов аккумуляторов является, кроме их громоздкости, необходимости держать в резерве крупные мощности дублирующих двигателей другого типа, которые простаивают во время работы ветродвигателя, и их сравнительно невысокий коэффициент полезного действия. Поднятая в водохранилище вода будет испаряться, не говоря уж о том, что часть энергии потеряется при работе насосной и гидротурбинной установок. Коэффициент полезного действия гидроаккумулятора составляет всего 40—50 процентов, а резервной станции с двигателем внутреннего сгорания, работающим на водороде в качестве горючего, вряд ли превзойдет 35 процентов. Еще ниже будет коэффициент полезного действия станции с паровой машиной или турбиной, не говоря уже о потерях тепла при хранении горячей воды в цистернах— теплоаккумуляторах. Ни одно из рассмотренных устройств при практическом исполнении не сможет, видимо, превратить в электрическую энергию свыше 50 процентов от затраченной.  [c.213]


Таким образом, необходимо считаться с неблагоприятной формой меридионального сечения проточной части ЦНД и изыскивать способы для ее аэродинамического совершенствования при больших углах раскрытия в этом сечении. До последнего времени повышенные потери энергии из-за больших углов раскрытия проточной части были одним из главных факторов, снижаюш,их к. п. д. ЦНД по сравнению с к. п. д. других цилиндров турбины. Правильная оценка этих потерь необходима при разработке мероприятий для их снижения и при обосновании решений таких крупных задач экономики паровых турбин, как выбор максимальной мощности агрегата, оптимального вакуума, числа цилиндров и степени их унификации.  [c.46]

В формуле (5-4) предпо)1ага-ется, что жидкая фаза ведет себя в решетках турбин так же, как и паровая, т. е. как сплошная среда. В действительности крупнодисперсная влага не огибает вместе с паром профили решеток, а ударяется о них и дробится. Это приводит к дополнительным потерям, существенно зависящим от u/ q. В этой связи в формулу (5-5) вводится экспериментальный коэффициент, в результате чего получается  [c.98]

Конденсатор турбоустановки типа К-И 520 приварен к четырем выхлопам ЦНД. Его паровое пространство разделено перегородкой, что позволяет осуществить двухступенчатую конденсацию пара с давлением отработавшего пара в расчетном режиме рк 3,2 кПа, рк" = = 4,0 кПа. Потери рабочего тела основного энергоблока в размере 1—2% расхода пара на турбину восполняются добавкой обессоленной воды из химической водоочистки. На линии ее подачи в конденсатор турбины установлены регуляторы уровня воды в деаэраторах РУД1 и РУД2. Уровень конденсата в конденсаторе поддерживается регулятором уровня (РУК), установленным на линии конденсата перед ПНД1.  [c.189]

Штрих-пунктирная линия относится к эталонному образцу, уровень потерь энергии в котором определяется только демпфированием в материале. Конструкционное демпфирование в лопатке в 2—6 раз больше, чем демпфирование в ее материале. Повышение конструкционного демпфирования возможно при увеличении первоначального зазора по первому зубу замка (раззазоривание). Аналогичные результаты получаются и для различных типов зам- ов паровых турбин [65, 82].  [c.259]

Питательная вода паровых котлов. Основной ее частью является конденсат турбины, остальные составляющие — конденсат станционных водоподогревателей и вспомогательных турбин, а также конденсат пара, отпускаемого внешним потребителям. Восполнение потерь производится добавлением химически очищенной воды или дистиллата, получаемого в испарителях. На станциях принимают меры к сбережению конденсата, так как к качеству питательной воды предъявляются высокие требования, в частности, содержание растворенного кислорода не более 15—30 мкг1л, общая жесткость не более 1—10 мкг-экв1л, низшие значения относятся к прямоточным котлам, а высшие — к барабанным котлам с давлением пара до 45 ama.  [c.13]

Но надо заметить, что указанный недостаток — уклон содержания учебников по термодинамике в сторону тепловых Л1ашин, их конструкций, теории и даже эксплуатационных особенностей — наблюдался не только в дореволюционных учебниках, но даже в некоторых учебниках, изданных в 20—30-х годах. Так, напри.мер, во втором издании тщательно методически отработанного учебника Суш-кова прикладная часть его тоже превышала 50% всего объема. При этом в не.м рассматривались следующие данные, относящиеся к тепловым машинам индикаторная диаграмма паровой машины среднее индикаторное давление влияние на работу машины стенок цилиндра, скорости поршня и ее раз.меров многократное расширение активные и реактивные турбины ступенчатые турбины потери от трения в направляющих аппаратах двигатель Дизеля двигатель Отто действительные индикаторные диаграммы их сравнение двигателей Отто и Дизеля и т. п. В дальнейших изданиях учебника Сушкова этп теплотехнические данные уже не приводились и их прикладная часть была построена в соответствии с задачами термодинамики.  [c.215]


Смотреть страницы где упоминается термин Потери в паровой турбине и ее : [c.392]    [c.29]    [c.219]    [c.318]    [c.17]    [c.75]    [c.112]    [c.5]    [c.179]    [c.226]   
Смотреть главы в:

Тепловые электрические станции и их технологическое оборудование  -> Потери в паровой турбине и ее



ПОИСК



ПАРОВЫЕ ТУРБИНЫ Потеря тепла в турбине, коэффициенты полезного действия Я расход пара

Потери в паровых турбинах

Потери в паровых турбинах паровых турбинах

Потери в соплах паровых турбин

Потери в турбине

Потери мощности на трение и от утечек пара в паровых турбинах

Потери пара на выходную ско, рость в паровых турбинах

Потери энергии в паровых турбинах

ТЕПЛОВЫЕ ДВИГАТЕЛИ Принципы работы паровых и газовых турбин Преобразование энергии на рабочих лопатках турбины и потери в ступени

Турбина паровая

Турбины Паровые турбины

Турбины паровые



© 2025 Mash-xxl.info Реклама на сайте