Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющие стали высокопрочные

Нержавеющие стали высокопрочные с неустойчивым аустенитом 42—44  [c.436]

Материалы резко различаются по обрабатываемости резанием. При выборе материалов в процессе проектирования необходимо учитывать это различие, особенно в связи с широким применением труднообрабатываемых материалов, таких как высокопрочные, жаростойкие и нержавеющие стали, высокопрочные чугуны, сплавы титана, молибдена и др.  [c.122]


Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

Высокопрочные нержавеющие стали представляют особый интерес для конструкторов летательных аппаратов. Поскольку такие аппараты часто приходится использовать в морских условиях, то стойкость высокопрочных сплавов в морских атмосферах при высоких уровнях растягивающих напряжений имеет очень большое значение. Наибольший интерес представляют сплавы, упрочняемые до предела текучести выше 1 ГПа.  [c.66]

В Тихом и Атлантическом океанах были проведены глубоководные испытания конструкционных сталей, высокопрочных нержавеющих сталей и алюминиевых сплавов с 7 различными лакокрасочными покрытиями [219]. В Тихом океане образцы находились на дне на глубине 1800 м в течение 6 мес, а в Атлантическом — на дне на 1235 м в течение более 4 лет.  [c.196]

Более радикальным путем решения этой задачи, наметившимся в последние годы, является переход к принципиально новым направлениям легирования конструкционных сталей. К этим направлениям относятся во-первых, обеспечение коррозионной стойкости, т. е. создание высокопрочных нержавеющих сталей, резко отличающихся но уровню Ов от классических нержавеющих сталей и приближающихся по прочности к конструкционным сталям с Ов = 200 кГ мм во-вторых, переход от собственно сталей, являющихся сплавом железа и углерода, в которых упрочнение достигается закалкой, к безуглеродистым сплавам на основе железа, упрочняемых старением, что обеспечивается специальным легированием Со, Ni, Мо, Ti.  [c.200]


ВЫСОКОПРОЧНЫЕ НЕРЖАВЕЮЩИЕ СТАЛИ С НЕУСТОЙЧИВЫМ АУСТЕНИТОМ (СТАЛИ ПЕРЕХОДНОГО КЛАССА)  [c.42]

В заключение необходимо отметить, что увеличение временного сопротивления углеродистых, низколегированных и высокопрочных нержавеющих сталей до 1600—2000 МПа вследствие изменения их химического состава или термообработки приводит к повышению предела выносливости образцов до 700—800 МПа и не оказывает заметного влияния на условный предел коррозионной выносливости. Последний при Л/=5 10 цикл на-  [c.65]

Шведской металлургической фирме удалось получить тончайшие — в 25 раз тоньше человеческого волоса,— волокна из высокопрочной нержавеющей стали. Это первые в мире стальные волокна, которые можно будет использовать в текстильной промышленности. Почти не видимые глазу стальные волоски станут вплетать в ковры, в рабочую и детскую одежду — во все материалы, не-суш,ие большую нагрузку. По мнению специалистов, стальные волокна сыграют ту же роль, что и арматура в железобетоне — намного увеличат долговечность н прочность изделий. Единственное, с чем текстильщики пока еще не смогли справиться,— это окраска необычного сырья.  [c.31]

Условия работы роторов сепараторов требуют применения высокопрочных нержавеющих сталей и титановых сплавов, решения сложных технологических и металлургических вопросов,  [c.119]

Высокопрочные нержавеющие стали переходного класса  [c.45]

Высокопрочные аустенитные нержавеющие стали  [c.48]

Высокопрочные нержавеющие стали аустенитного класса имеют Сто,2 800 МПа и упрочняются при проведении термической обработки.  [c.48]

Эти кислоты можно получить в лаборатории, пропуская сероводород через воду, насыщенную SO . Для понимания механизма наблюдаемых разрушений следует учесть, что при протекании коррозионных процессов эти кислоты легко катодно восстанавливаются. В связи с этим политионовые кислоты действуют в качестве катодного деполяризатора, который способствует растворению металла по границам зерен, обедненным хромом. Еще одна форма влияния, возможно, заключается в том, что продукты их катодного восстановления (HjS или аналогичные соединения) стимулируют абсорбцию межузельного водорода сплавом, обедненным хромом. Под напряжением этот сплав, если он имеет ферритную структуру, подвергается водородной коррозии вдоль границ зерен. Аустенитный сплав в этих условиях устойчив. Показано, что наличие в морской воде более 2 мг/л серы в виде Na S либо продуктов катодного восстановления сульфитов SOg" или тиосульфатов SjO вызывает водородное растрескивание высокопрочных сталей с 0,77 % С, а та кже ферритных и мартенситных нержавеющих сталей 167]. Предполагают, что и политионовые кислоты оказывают аналогичное действие.  [c.323]

Примерами стабильных материалов являются нержавеющая сталь, сталь 45, а также высокопрочный чугун марки ВПЧНМ. На рис. 21.3.5 показана схема изменения суммарных деформа-  [c.366]

Разработка высокопрочных корроэионностойких аустенитных нержавеющих сталей для сероводород-содержащих сред 42 325  [c.33]

Коррозионная усталость. Коррозионная среда отрицательно влияет на усталостную прочность практически всех конструкционных металлов и сплавов. Так, в речной воде, являющейся сравнительно малоагрессивной средой, усталостная прочность нержавеющих сталей снижается на 10— 30 %, углеродистых и легированных конструкционных сталей —в 1,5—2 раза, высокопрочных алюминиевых сплавов —в 2—3 раза. Особенно сильное воздействие среды наблюдается при наличии концентраторов напряжений. Как правило, при испытании в коррозионных средах не наблюдается физический предел выносливости, поэтому при большом числе циклов (10 —10 ) нагружения несущая способность образца может оказаться очень низкой. Это заставляет значительно увеличивать запасы прочности конструкций, подвергающихся циклическим нагрузкам и работающих в коррозионной среде.  [c.158]

ВОЙ формы (Ре, Сг)2зСб в аустенитной нержавеющей стали [7], растрескивание карбида титана (Т1С) в высокопрочной стали [27], растрескивание частиц карбида железа в сталях [63] и разрыв частиц кремния в сплавах А1 — 81 [29]. На рис. 1 приведено типичное растрескивание частиц цементита (карбида железа) в стали.  [c.61]


По антикоррозионным свойствам эти материалы практически не уступают однородной нержавеющей стали. Показательным являются опыты с высокопрочной листовой сталью марки 42Х2ГСНМА, плакированной с обеих сторон очень тонкими (до 0,1 мм) слоями нержавеющей стали Х18Н10Т или нимоником ЭИ435 при более толстых слоях, естественно, защита от коррозии лишь усилится.  [c.237]

С целью повышения качества изделий и скижспия трудоемкости изготовления заводом освоена электро-шлаковая выплавка патрубков на крупногабаритном энергетическом оборудовании, с участием Центрального научно-исследовательского института технологии машиностроения (ЦНИИТмаш) разработана технология и освоено производство крупных отливок корпусов главных циркуляционных насосов и главных запорных задвижек для реакторных установок ВВЭР-1000 из высокопрочной нержавеющей стали. Заводом в короткие сроки созданы новые материалы, технология произ-  [c.239]

Коррозионное растрескивание наносит огромный экономический ущерб народному хозяйству, вызывая повреждения деталей транспортных средств (морские суда, самолеты, железнодорожный и автомобильный транспорт), газо- и нефтедобываю-и его оборудования, подземных трубопроводов, теплоэнергетического оборудования, турбин, насосов и др. Растрескиванию преимущественно подвержены высокопрочные стали, стенитные нержавеющие стали, а также титановые, алюминиевые и магниевые сшивы. По данным американской, Лю пант компани  [c.41]

Большой ущерб народному хозяйству наносит так называемое щелочное растрескивание сталей. Оно наблюдается на де-компазерах алюминиевых заводов, на теплоэнергетическом оборудовании, на предприятиях нефтехимических производств, ртутных установки по производству хлора, в выпарных аппаратах для концентрирования щелочи [3]. Щелочному растрескиванию подвержены высокопрочные мартенситные стали, аустенит-ные нержавеющие стали, в некоторых случаях углеродистые и 44  [c.44]

На рис 1 показана схема прибора для ДТА. В центральной части находятся ячейки с двенадцатью образцами, размещенными вокруг эталона. Простые и дифференциальные термопары подводятся через сверления малого диаметра в стенках ячейки. Хороший тепловой контакт между образцами и стенками ячеек обеспечивается заполнением промежутка одной или двумя каплями жидкости с высокой теплопроводностью (октадекана и днэтилфталата). Ячейки с образцами, находятся на плите-осповании, к которой болтами из высокопрочного алюминиевого сплава через вакуумные уплотнения из индиевой проволоки крепится крышка. Камера с образцами крепится на небольшом холодильнике Джоуля — Томпсона (мощностью до 4 Вт при 23 К), в котором имеется подающая трубка из нержавеющей стали, контактирующая с плитой-основанием. С помощью медной струны эта трубка соединена с экраном — так осуществляется контакт этих деталей одной с другой и с резервуаром для жидкого азота.  [c.390]

Наличие на поверхности металла фаз с различным составом и структурой приводит, как указывалось выше, к пространственному разделению катодного и анодного процессов, следствием чего являются неравномерный характер коррозии и структурно-избирательные виды коррозии (межкрис-таллитная и ножевая коррозия нержавеющих сталей, язвенная коррозия). Для высокопрочных металлов к отрицательным последствиям может привести катодная реакция (наводороживание металла при травлении, водородная хрупкость).  [c.31]

Биметаллы успешно применяются во многих отраслях промышленности при решении конструктивных и технологических вопросов (гибка, сварка, отделка поверхности). Для изготовления емкостного оборудования используют биметалл углеродистая стальЧ-нержавеющая сталь . Весьма эффективно применение биметаллических конструкций из высокопрочных сталей с титаном. В этом случае удается получить высокую прочность и высокую коррозионную стойкость. Обычно такие биметаллические конструкции производят с применением взрывной технологии или диффузионной сваркой. В практике нашел широкое применение биметалл сталь-f медь , особенно для труб, подвергающихся высокому внутреннему давлению и действию коррозионной среды. Путем наплавки (иногда с последующей деформацией) производят биметаллические полуфабрикаты и изделия из биметалла сталь-f бронза . Большинство листов из алюминиевых сплавов производится с технологической планировкой чистым алюминием или сплавом алюминия с цинком, которая выполняет роль более коррозионностойкого слоя.  [c.77]

Нержавеющие стали в целом находят весьма ограниченное применение в морских условиях. Успешное их применение основывается на контроле окружающей среды с целью поддержания пассивности металла пли же подразумевает защитные меры, препятствующие местной коррозии. Нержавеющие стали обычно стошш в морских атмосферах, где на от крытой незащищенной поверхности сохраняется пассивная пленка. Благоприятны для поддержания пассивности и условия в быстром потоке морской воды. В спокойной морской воде причиной разрушения металла часто является местная коррозия, в частности ппттинг. Наблюдается также коррозионное растрескивание под напряжением. Однако прп правильном выборе типа сплава, а также режимов упрочнения п старения высокопрочные нержавеющие стали стойки в морских атмосферах.  [c.57]

В целом высокопрочные аустенитные нержавеющие стали обладают очень высокой стойкостью в морских атмосферах. Высокая прочность этих сплавов достигается путем холодной деформации, после чего обычно следует термообработка, частично восстанавливающая пластичность. После холодной деформации и термообработки аустенитные нержавеющие стали обладают очень хорошей стойкостью в агрессивных морских атмосферах. Однако в местах сварных соединений стойкость теряется. Наблюдается также коррозия этих сталей при высоких температурах, в частности при испытаниях в кипящем 42%-ном растворе Mg l2, а также в горячей морской воде [12]. О коррозии при комнатных температурах сообщалось очень редко. После термообработки на твердый раствор аустенитные нерл<авеющие стали не подверл<ены кор-  [c.66]


Второе направление борьбы с поверхностными очагами разрушения заключается в создании поверхностных слоев, не чувствительных к повреждениям. Для предотвращения опасности механических повреждений во многих случаях может быть достаточным регулируемое обезуглероживание. Еще более действенно плакирование высокопрочной стали менее прочными и более пластичными марками, особенно нержавеющей стали. В последнем случае плакированный слой способен предотвратить опасность не только механических повреждений, но и повреждений диффузионного и коррозионного происхождения. Плакировка может производиться различными методами в процессе прокатки, выплавки, путем наварки и др. Наиболее высокое качество дает производство плакированных полуфабрикатов путем сварки взрывом. Плакированный слой толщиной 0,5 жм, как видно из рис. 43, значительно повышает надежность, однако он значительно усложняет и удорожает как получение полуфабрикатов, так и дальнейшую обработку, в первую очередь — сварку. Эти обстоятельства пока препятствуют должному применению плакированных высокопрочных сталей и делают более экономически выгодным внедрение регулируемого обезуглероживания или нержавеющих стареющпх сталей.  [c.202]

В ы т я ж к а. По способности к глубокой вытяжке в холодном состоянии технический титан (ВТ1-00, ВТ1-0, ВТ1-1) можно приравнять к алюминиевым сплавам. Предельный коэффициент вытяжки его при 20° С Квит- пр — 2,0 (т = 0,5). Сплавы средней прочности имеют Кдит- пр 1,5ч-1,8 (т = 0,68- 0,М) высокопрочные сплавы допускают вытяжку только в нагретом состоянии. Усилие вытяжки титановых сплавов и давление прижима в холодном состоянии в 1,2—1,5 раза выше, чем у нержавеющих сталей.  [c.191]

Имеющиеся в литературе немногочисленные данные дают основание предположить, что описанная выше инверсия масштабного эффекта при коррозионной усталости характерна не для всех металлов и сплавов. Она обнаружена у углеродистых, низколегированных и некоторых высокопрочных нержавеющих сталей, а также алюминиевых сплавов. У стали 12Х18Н9Т увеличение диаметра образца с 10 до 60 мм привело к снижению сопротивления усталости и в воздухе, и в коррозионной среде, т.е. инверсия масштабного фактора не обнаружена [130, с. 16—26]. Причину ее отсутствия авторы видят в склонности стали 12Х18Н9Т к щелевой кор-  [c.135]

Одновременно с разработкой керамических флюсов для сварки конкретных сталей изучалась свариваемость этих сталей и разрабатывалась технология сварки (К. К. Хренов, В. И. Дятлов, М. Н. Гапчен-ко, Д. М. Кушнерев, Н И. Коперсак, И. А. Шостак). Так, разработана технология сварки малоуглеродистых, низколегированных, хладостойких, высокопрочных, жаропрочных, высоколегированных, нержавеющих сталей и сплавов, а также разнородных соединений из них.  [c.23]

Перспектива использования тугоплавких металлов и сплавой на их основе в качестве оболочечных материалов ограничена их технологическими свойствами. Для оболочек твэлов необходимы тонкостенные трубки, которые трудно изготовить из нержавеющих сталей и тем более из высокопрочных тугоплавких материалов. Проводятся исследования распухания молибдена [3, 62], вольфрама [145, 146], ванадия [147, 212], тантала [107] и сплавов на основе молибдена [213], ванадия [212], ниобия [212]. В работе [147] показано, что распухание сплава Мо — 0,5% Ti после облучения при температурах 585 и 790° С флюенсом 2,5 10 н/см ( > 0,1 МэБ) больше, чем молибдена [147].  [c.178]

Экспериментальные данные о разрушающей способности единичных ударов капель приведены в ряде работ (см., например, Л. 48 и 77—79]). Авторы (Л. 48] исследовали разрушение различных металлических и неметаллических материалов каплями воды цилиндрической формы (диаметр 1 мм, длина 20 мм, масса приблизительно равна массе большой дождевой капли) при скоростях соударения до 1 050 м/сек. Было установлено, что при одиночных ударах капли со скоростью 900 м/сек деформируется даже такой твердый материал, как карбид урана. Типичный пример деформации высокопрочной нержавеющей стали под действием одиночного удара цилиндрической капли показан на рис. 34. Там же показан профиль деформированной поверхности — кривая Ь. При ударе образуется мелкое блюдцеобразное углубление с более глубоким центральным углублением и кольцевой окантовкой, вид которой напоминает эроди-4 51  [c.51]

В качестве материала рабочих колес используются высокопрочные перлитные и хромистые нержавеющие стали. Для сварных колес основное применение в отечественной практике нашли хромистые нержавеющие стали марок 1X13 и 2X13.  [c.133]

Заливаемые в серый или высокопрочный чугун направляющие лопатки во избежание некоторого охрупчивания кромок рекомендуется изготовлять из хромистой нержавеющей стали 1X13, но имеющей нижний уровень содержания углерода, т. е. 0,09%- В этих случаях желательно путем контролирования химического сотава отбирать для заливки в чугунные диафрагмы сталь с содержанием углерода не выше 0,1%.  [c.374]

В качестве трубопроводов гидросистем машин в основном применяют бесшовные цилиндрические трубы из сталей СЮ и С20 (ГОСТ 8734—58) и реже трубы из цветных металлов. Для гидросистем самолетов применяют преимущественно трубопроводы из нержавеющей стали 1Х18Н9Т и реже — из сталей ЗОХГСА и 20 в отдельных случаях применяют трубы из высокопрочного сплава на медной основе. Для сверхвысоких давлений (500—7000 кПсм ) применяют трубы из специальных легированных сталей с механической обработкой внутренней поверхности. Для специальных целей применяют также трубы из никеля, титана и различных сплавов. Трубопроводы из титановых сплавов имеют преимущества перед стальными трубопроводами по удельному весу и жаропрочности, но значительно уступают им по пределу выносливости и допустимым усталостным напряжениям.  [c.571]

Обычно штифты изготовляют, так же как и шток, h j высокопрочных нержавеющих сталей 1Х17Н2 и ЭИ654, для которых можно принимать  [c.120]

Аустенитно-мартенситные нержавеющие стали получили применение, главны.м образом, как высокопрочные. Аустенитно-мартенситные дисперсионно-твердеющие стали обладают существенно более высокими свойствами, чем чисто аустегштные, и применение их предпочтительно, если нет дополнительных требований в отношении магнитных свойств, так как аусте-нитные еталн немагнитны (табл. 8.24, 8.25 ГОСТ 5632-72 и ГОСТ 5949-75).  [c.290]

Крепежные изделия. В качестве материала для крепежных деталей широкое распространение получил высокопрочный титановый сплав марки ВТ 16 применяются также сплавы марок ВТ14, ВТЗ-1, ВТ5. При этом наиболее существенное значение имеют вопросы свинчиваемости титанового крепежа. Установлено, что серебрение, кадмирование и фосфатирование титановых болтов с последующей смазкой деталей дисульфидом молибдена снижает коэффициент трения в резьбе в 1,5—3 раза. Однако коэффициент трения в этих случаях нестабилен и заедание в резьбе не исключается. Аналогичное поведение крепежных соединений обнаруживается при анодировании болтов. С. Г. Глазунов и др. рекомендуют для болтов из сплава марки ВТ16 применять гайки из нержавеющих сталей, а в случаях, когда в паре с титановыми болтами должны быть титановые гайки, то последние следует изготовлять из сплавов марок ВТ 16 или 0Т4 и термически оксидировать либо покрывать твердой смазкой ВАП-1 или ВАП-2.  [c.221]

ТТ8К6 - чистовое и получистовое точение, растачивание, фрезерование и сверление серого и ковкого, а также отбеленного чугуна непрерывное точение с небольшими сечениями среза стального литья, высокопрочных, нержавеющих сталей обработка сплавов цветных металлов и некоторых марок титановых сплавов при малом и среднем сечениях среза  [c.93]



Смотреть страницы где упоминается термин Нержавеющие стали высокопрочные : [c.114]    [c.292]    [c.137]    [c.149]    [c.152]    [c.21]    [c.41]    [c.144]    [c.135]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.0 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

В95 высокопрочные

Высокопрочные аустенитные нержавеющие стали

Высокопрочные нержавеющие стали аустенитного класса (немагнитные)

Высокопрочные нержавеющие стали переходного класса

Высокопрочные нержавеющие стали с неустойчивым аустенитом (стали переходного класса)

Нержавеющие стали высокопрочные двухслойные листовые

Нержавеющие стали высокопрочные двухфазные аустенитно-ферритные

Нержавеющие стали высокопрочные литейные 201—208 — Механические свойства 50 — Термическая обработка 50, 203, 204, 211, 212 Химический состав

Нержавеющие стали высокопрочные с неустойчивым аустенитом

Стали высокопрочные

Стали нержавеющие



© 2025 Mash-xxl.info Реклама на сайте