Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Высокопрочные аустенитные нержавеющие стали

Высокопрочные аустенитные нержавеющие стали  [c.48]

В морской воде и в агрессивных шахтных водах [250] нержавеющие стали подвергаются точечной коррозии. Однако если одновременно имеется склонность к межкристаллитной коррозии, точечная коррозия переходит постепенно в межкристаллитную, развивающуюся сравнительно быстро [193]. С межкристаллитной коррозией, связанной с точечными поражениями на границах зерен, можно встретиться не только у хромистых нержавеющих сталей, но и у высокопрочных аустенитных хромомарганцевоникелевых сталей с азотом, если их подвергнуть нагреву в области критических температур (табл. 14). В тех случаях, когда ста.иь  [c.78]


Высокопрочные нержавеющие стали аустенитного класса имеют Сто,2 800 МПа и упрочняются при проведении термической обработки.  [c.48]

Аустенитно-мартенситные нержавеющие стали получили применение главным образом как высокопрочные. Аустенитно-мартенситные диспер-сионно-твердеющие стали обладают существенно более высокими свойствами, чем чисто аустенит-ные, и применение их предпочтительно, если нет дополнительных требований к магнитным свойствам, так как аустенитные стали немагнитны (табл. 8.24, 8.25 ГОСТ 5632-72 и ГОСТ 5949-75).  [c.326]

ВЫСОКОПРОЧНЫЕ нержавеющие СТАЛИ АУСТЕНИТНОГО КЛАССА (НЕМАГНИТНЫЕ)  [c.210]

Весьма перспективными являются обладающие высокой конструкционной надежностью плакированные трехслойные композиции типа высокопрочная сталь + нержавеющая аустенитная сталь или тугоплавкий металл + жаростойкий сплав II—3).  [c.238]

В целом высокопрочные аустенитные нержавеющие стали обладают очень высокой стойкостью в морских атмосферах. Высокая прочность этих сплавов достигается путем холодной деформации, после чего обычно следует термообработка, частично восстанавливающая пластичность. После холодной деформации и термообработки аустенитные нержавеющие стали обладают очень хорошей стойкостью в агрессивных морских атмосферах. Однако в местах сварных соединений стойкость теряется. Наблюдается также коррозия этих сталей при высоких температурах, в частности при испытаниях в кипящем 42%-ном растворе Mg l2, а также в горячей морской воде [12]. О коррозии при комнатных температурах сообщалось очень редко. После термообработки на твердый раствор аустенитные нерл<авеющие стали не подверл<ены кор-  [c.66]

Разработка высокопрочных корроэионностойких аустенитных нержавеющих сталей для сероводород-содержащих сред 42 325  [c.33]

ВОЙ формы (Ре, Сг)2зСб в аустенитной нержавеющей стали [7], растрескивание карбида титана (Т1С) в высокопрочной стали [27], растрескивание частиц карбида железа в сталях [63] и разрыв частиц кремния в сплавах А1 — 81 [29]. На рис. 1 приведено типичное растрескивание частиц цементита (карбида железа) в стали.  [c.61]

Эти кислоты можно получить в лаборатории, пропуская сероводород через воду, насыщенную SO . Для понимания механизма наблюдаемых разрушений следует учесть, что при протекании коррозионных процессов эти кислоты легко катодно восстанавливаются. В связи с этим политионовые кислоты действуют в качестве катодного деполяризатора, который способствует растворению металла по границам зерен, обедненным хромом. Еще одна форма влияния, возможно, заключается в том, что продукты их катодного восстановления (HjS или аналогичные соединения) стимулируют абсорбцию межузельного водорода сплавом, обедненным хромом. Под напряжением этот сплав, если он имеет ферритную структуру, подвергается водородной коррозии вдоль границ зерен. Аустенитный сплав в этих условиях устойчив. Показано, что наличие в морской воде более 2 мг/л серы в виде Na S либо продуктов катодного восстановления сульфитов SOg" или тиосульфатов SjO вызывает водородное растрескивание высокопрочных сталей с 0,77 % С, а та кже ферритных и мартенситных нержавеющих сталей 167]. Предполагают, что и политионовые кислоты оказывают аналогичное действие.  [c.323]


В табл. 4 приведены основные дефекты структуры стали. Ряд методов определения качества структуры стандартизован. Метод определения величины зерна стали (ГОСТ 5639-51). Методы определения неметаллических включений в стали (ГОСТ 1778-62). Эталоны микроструктуры стали (ГОСТ 8233-56 и ГОСТ 5640-59). Метод определения глубины обезуглероживания стальных полуфабрикатов и деталей микроанализом (ГОСТ 1763-42). Метод определения окалиностой-кости стали (ГОСТ 6130-52). Метод испытания стали на чувствительность к механическому старению (ГОСТ 7268-54). Методы испытания на межкристаллитную коррозию аустенитных и аустенитно-ферритных нержавеющих сталей (ГОСТ 6032-58). Методы определения микроструктуры твердых металлокерамических сплавов (ГОСТ 9391-60) и макроструктуры стали (ГОСТ 10243-62). Методы определения структуры серого и высокопрочного чугуна (ГОСТ 3443-57).  [c.8]

Прочность нержавеющих сталей аустенитно-мартен-ситного класса (типа 09Х15Н9Ю— 0,09% С, 14— 16% Сг, 7—9% Ni, 0,7—1,3%А1) сильно зависит от режимов термической обработки. Нержавеющие стали этого класса получили применение главным образом как высокопрочные.  [c.172]

При расположении свйрных соединений вне зоны действия максимальных нагрузок, требования к их прочности могут быть пониз ены. В этом случае допускается сварка не по всему сечению (например, соединение лопастей рабочего колеса с нижним ободом) или выполнение сварки электродами аустенитного класса без подогрева и последующей термообработки по прочностным характеристикам такие сварные соединения уступают основному металлу. Чаще всего электроды аустенитного класса применяют на деталях из высокопрочных нержавеющих сталей при выполнении ремонтнь1х работ в условиях ГЭС.  [c.308]

Говоря о поисках рациональной конструкции цельнометаллического крыла, нельзя не упомянуть работы по созданию конструкции самолетов серии Сталь и, прежде всего, работы, выполненные под руководством А. И. Путилова по самолету Сталь-2 (1943 г.). Лонжерон крыла этого самолета (рис. 21 [9]) выполнен целиком из стали советского производства Энерж-6. Эта нержавеющая сталь аустенитного класса имела достаточно высокую прочность (140кгс/мм2) и хорошую пластичность. Использование высокопрочной стали в относительно ма-лонагруженной конструкции приводит к малым потребным значениям площади поперечного сечения элементов. В сжатых элементах это может вызвать потерю их устойчивости как общую (искажение формы элемента в целом), так и местную (искажение формы поперечного сечения элемента). Для увеличения критических напряжений общей потери устойчивости стержня (акрЕг // здесь г = уТ/Р — радиус инерции сечения, I — длина стержня) необходимо увеличивать радиус инерции его поперечного сечения, т. е. отыскивать его рациональную форму при заданной площади. Основным способом увеличения местных критических напряжений (акр<5/Л, где д — толщина листа, К — местный радиус кривизны сечения) является гофрирование листа.  [c.360]

Х13Н4Г9, выпускаемую в виде холоднокатаной ленты, применяют при изготовлении легких высокопрочных конструкций, соединяемых точечной или роликовой электросваркой. Ввиду высокого содержания углерода другие методы сварки для этой стали неприменимы из-за возможности появления в сварных соединениях склонности к межкристаллитной коррозии, В состоянии после закалки сталь 2Х13Н4Г9 имеет аустенитную структуру, переходящую при холодной пластической деформации в мартенсит (-у-> aj). Это имеет большое значение, так как упрочнение достигается как путем наклепа, так и благодаря частичному мартенсит-ному превращению. В результате сталь в холоднокатаном состоянии сочетает высокую прочность с достаточно высокой пластичностью [31 ]. Изменение свойств некоторых нержавеющих хромомарганцовоникелевых сталей в зависимости от различных факторов показано на рис. 25—28 [28 и др.[.  [c.36]


Рис. 1. Образцы биметаллических материалов 1 — низколегированная корпусная сталь, плакированная нержавеющей аустенит-иой сталью 2 — низколегированная сталь с введешиамв нее трещиноостановителем из вязкого сплава специального состава 3 — сварное соединение конструкционной стали, плакированное нержавеющей аустенитной сталью 4 — многослойный материал из высокопрочного алюминиевого сплава с наружными плакирующими слоями и внутренними прослойками из технически чистого алюминия 5—8 — различные сочетания металлов и сплавов, при которых достигается высокий комплекс свойств жаропрочность, повышенные теплопроводность и износостойкость, малая плотность, высокая демпфирующая способность Рис. 1. Образцы биметаллических материалов 1 — низколегированная корпусная сталь, плакированная нержавеющей аустенит-иой сталью 2 — <a href="/info/58326">низколегированная сталь</a> с введешиамв нее трещиноостановителем из вязкого <a href="/info/59795">сплава специального</a> состава 3 — <a href="/info/2408">сварное соединение</a> <a href="/info/51124">конструкционной стали</a>, плакированное <a href="/info/161844">нержавеющей аустенитной сталью</a> 4 — <a href="/info/134125">многослойный материал</a> из <a href="/info/626652">высокопрочного алюминиевого сплава</a> с наружными <a href="/info/183873">плакирующими слоями</a> и внутренними прослойками из <a href="/info/543860">технически чистого алюминия</a> 5—8 — различные сочетания металлов и сплавов, при которых достигается высокий комплекс <a href="/info/537100">свойств жаропрочность</a>, повышенные теплопроводность и износостойкость, малая плотность, высокая демпфирующая способность
В ряде случаев для сварки сталей этого класса может использоваться высоколегированная нержавеющая проволока, обеспечивающая аустенитную или аустенитно-мартенситную структуру шва. Такие швы обладают высокой пластичностью и достаточной прочностью. Высокая растворимость водорода, кислорода и азота в аустените обусловливает стойкость сварных соединений против охрупчивания. Прочность ау-стенитно-мартенситных швов уступает прочности основного металла, однако высокий запас пластичности обеспечивает достаточно хорошую работоспособность конструкции. Наибольшее применение при сварке высокопрочных сталей получила проволока Св-10Х16Н25М6 (по ГОСТу 2246—70).  [c.342]


Смотреть страницы где упоминается термин Высокопрочные аустенитные нержавеющие стали : [c.144]    [c.135]    [c.213]    [c.21]    [c.253]    [c.13]    [c.359]    [c.122]   
Смотреть главы в:

Коррозионностойкие стали и сплавы  -> Высокопрочные аустенитные нержавеющие стали



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Аустенитные стали

В95 высокопрочные

Нержавеющие стали высокопрочные

Стали высокопрочные

Стали нержавеющие

Стали нержавеющие аустенитные



© 2025 Mash-xxl.info Реклама на сайте