Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Безвихревое движение. Уравнение для давления

Безвихревое движение. Уравнение для давления. Если давление является функцией плотности р = / (с), то уравнение безвихревого движения ) под действием консервативных сил дается формулой (7) п. 3.43 и имеет  [c.92]

И в том и в другом случае векторы скорости жидкости горизонтальны и перпендикулярны радиусу г. При г > а движение безвихревое, так как имеется потенциал скорости ф = —а (1)0. Следовательно, уравнение для давления имеет вид  [c.336]


Условие для давления на свободной поверхности. Пусть pt — давление внутри жидкости в точке Р (см. рис. 262) и пусть ро — внешнее давление. Мы снова будем предполагать, что движение безвихревое это предположение выполняется в случае волн, имеющих место в невязкой жидкости. Тогда уравнение для давления (если пренебречь членом V29 ) запишется в виде  [c.370]

Решение задач безвихревого обтекания цилиндрических тел, помещенных между плоскопараллельными границами потока вязкой жидкости, этой воображаемой идеальной жидкостью может быть произведено обычными методами, изложенными в гл. V настоящей книги. В этом смысле рассматриваемое воображаемое движение можно назвать вязкой аналогией плоского безвихревого потока идеальной жидкости. Однако стоит отметить интересную особенность такого рода обтекания, заключающуюся в том, что для определения поля давлений нельзя уже пользоваться уравнением Бернулли, которого в этом случае, как и в других случаях вязких потоков, просто нет. Следует оговориться, что предыдущие рассуждения, использованные при выводе решений (152) и вытекающих из него следствий (153) — (155), теряют свою силу вблизи поверхности помещенного в поток цилиндрического тела, однако область эта по сравнению с размерами тела невелика, и ее влиянием на потенциальный поток можно пренебречь. Как показывают наблюдения, этот эффект становится заметным в кормовой области обтекаемого тела и в следе за ним. Аналогичные явления имеют место в течениях вязкой жидкости в пограничных слоях, теории которых посвящена следующая глава.  [c.410]

Уравнение импульса показывает тогда, что переменная часть давления Ар О ). При этом граница О В области О в первом приближении должна оставаться прямой. Теория малых возмуш ений, применяемая к сверхзвуковому потоку 1, показывает, что отклонение наклона О В от прямой О (е ). Для получения стационарного решения температура газа То в области О в первом приближении равна температуре стенки Т . Плотность ро тогда в первом приближении постоянна и соответствует значениям р = Ро, Т = То. Подстановка приведенных оценок в уравнения Навье-Стокса и совершение предельного перехода е О показывает, что течение в области О описывается полными уравнениями Эйлера для невязкой несжимаемой жидкости. Движение остается безвихревым, так как все струйки тока начинаются при хд +оо из состояния покоя (втекая затем в зону смешения). Для функции тока можно написать уравнение Лапласа  [c.39]


ТО эти две величины и уравновешиваются. При рассмотрении движения жидкости, не имеющей свободных поверхностей раздела, соединяют обе величины статического давления вместе р + Н-( = р, и эта сумма представляет собой общую величину статического давления. Если, например, жидкостные манометры находятся на одной высоте н в плоскости, принятой за нуль (А = 0), а соединительные трубки от приемника к манометрам наполнены той же жидкостью, в которой измеряется давление, то эти манометры и покажут полное статическое давление рЦ-Лт- о р/2 есть кинетическая э н е р г и я единицы объема жидкости и называется гидродинамическим давлением (напором) (фиг. 6). Вместо гидродинамического давления в кг/лА или мм вод. ст. можно указывать высоту столба рассматриваемой жидкости, который оказывает такое же давление. Эта высота к = xfi 2g называется скоростной высотой (таблица на стр. 279). Уравнение Бернулли действительно для всей безвихревой области жидкости. Если поток установившийся, но не свободный от вихрей, то уравнение давления справедливо для каждой отдельной линии тока, если только можно пренебречь влиянием вязкости. Но при переходе от одной линии тока к другой постоянная в этом уравнении меняется..  [c.406]

Интеграл Лагранжа — Коши, так же как и уравнение Бернулли, в случае безвихревого движения служит для выражения давления р через кинематические элементы ф, F и координаты, от которых зависит П. Выражая через проекции grad ф на оси декартовых координат, будем иметь  [c.164]

Так как движение сообщается неподвижной жидкости, то, когда тело движется через нее, кинетическая энергия всей системы обязательно больше, чем энергия одного тела. Ввиду того, что работа, производящая этот излишек энергии, должна поставляться телом, усилие на тело зависит не только от скорости, но и от ускорения. Таким образом, если временное изменение кинематических соотношений включается в функцию потенциала или тока безвихревого потока, то для определения кинетической энергии жидкости можно использовать форму уравнения Бернулли для неустановившегося двилеения. Кирхгоф упростил эту проблему, доказав, что полное усилие может быть выражено в членах присоединенных масс или приращений действительной массы тела, пропорциональных объему и плотности вовлеченной в дви-леение жидкости коэффициент пропорциональности изменяется с изменением формы тела. Тэйлор увеличил ценность понятия присоединенных масс, выразив их в членах особенностей, порождаемых телом. Наконец, Легалли установил прямое соотношение между силами, действующими на тело, и особенностями. Таким образом, если распределение особенностей задано или установлено одним из методов решения уравнений течения, как это сделано в следующем разделе, тогда силы и моменты могут быть определены непосредственно без нахождения распределения давления.  [c.92]

Для плоских установившихся движений газа Л. И. Седов предложил использовать в качестве независимых переменных давление р и функцию тока г , а в качестве искомой функции — угол 0 наклона вектора скорости к оси X. Для функции 0 р, г ) также получается уравнение, линейное относительно ее вторых производных. Л, И. Седов (1950) и М, П. Михайлова (1949) рассмотрели решение задачи Коши для этого уравнения с помощью рядов р1азличного вида и изучили его характеристики, Седов нашел точные решения уравнения для 0, в том числе решение, обобщающее решение Прандтля — Майера на некоторый класс вихревых течений, а также установил свойства монотонности изменения газодинамических параметров вдоль характерных линий в области течения эти свойства обобщают аналогичные предложения для безвихревых течений, установленные А, А. Никольским и Г, И, Тагановым (1946), Седову удалось найти частные примеры точного решения задачи сверхзвукового обтекания тела со смешанным течением за скачком, но для неоднородного набегающего потока.  [c.161]

Отметим прежде всего, что компоненты вихря <ии входят только в уравнения (1.88), совпадающие с линеаризованными уравнениями для поля вихря в несжимаемой среде. Напомним в этой связи, что в случае несжимаемой жидкости По полю вихря <Ик и соответствующим граничным условиям всегда можно однозначно восстановить и поле скорости и. в сжимаемой же среде поле Скорости можно представить в виде суммы несжимаемой (со-ленондальнон) и безвихревой (потенциальной) компонент, последняя из которых уже не зависит от поля вихря. Таким образом, в случае движений, представляющих собой лишь слабое возмущение состояния покоя, система уравнений гидродинамики в первом приближении распадается на замкнутую систему уравнений относительно компонент поля вихря со , описывающую йесжимаемое течение, и на систему уравнений относительно переменных О, Р и 5, описывающую безвихревой сжимаемый поток. Прн этом пульсации давления и энтропии в том же приближении будут связаны лишь со сжимаемым безвихревым потоком, т. е. в несжимаемой (вихревой) компоненте течения они будут отсутствовать. В следующем приближении теории возмущений эти две компоненты будут уже взаимодействовать друг с другом, создавая дополнительные изменения давления и энтропии (на этом мы вкратце остановимся в самом конце настоящего пункта).  [c.71]


Указанное свойство позволяет в рассматриваемом случае плоского стационарного движения жидкости в области пограничного слоя заменить в правой части первого уравнения системы (3) частную производную др1дх на полную производную dpidx. Согласно тому же свойству, распределение давления р (х) вдоль пограничного слоя совпадает с распределением давления во внешнем безвихревом потоке. Это распределение по теореме Бернулли ( 20), справедливой для набегающего на тело безвихревого потока идеальной жидкости, можно связать со скоростью во внешнем потоке. Благодаря тонкости пограничного слоя, можно снести эту скорость на поверхность тела, положив ее равной той, зависящей только от продольной координаты X скорости скольжения U (х) жидкости по поверхности тела, которая имела бы место в идеальной жидкости, т. е. при отсутствии пограничного  [c.444]

Наиболее замечате-ньные результаты были получены в XIX в. в области исследования плоских установившихся потенциальных течений несжимаемой жидкости. Еще Ж. Лагранж (1781) ввел функцию тока для плоских течений удовлетворяющую для безвихревых течений, как и потенциал скорости, уравнению Лапласа. Кинематическое истолкование функции тока было дано В. Ренкином Разработка аппарата теории функций комплексного переменного дала возможность широко развить методы исследования плоских задач движения несжимаемой жидкости, которые в самом начале развивались совместно со смежными исследованиями задач электростатики. Первые работы, в которых при помощи теории аналитических функций исследуются простейшие задачи электростатики и гидродинамики, относятся к 60-м годам. Существенное развитие области применения теории функций в гидродинамике связано с изучением открытого Г. Гельмгольцем класса так называемых струйных течений жидкости — течений со свободными ли-78 ниями тока, на которых давление сохраняется постоянным. Интерес к этим течениям возник в связи с попытками получить на основе модели идеальной жидкости реальные картины обтекания тел с образованием силы лобового сопротивления и без бесконечных скоростей.  [c.78]

Особо важный вклад в понимание кавитации внес лорд Рэлей, опубликовавший в 1917 г. статью О давлении, развивающемся в жидкости при схлопывании сферической каверны [43]. Рэлей использовал предложенную Безантом в 1859 г. постановку задачи о пустой полости в однородной жидкости при постоянном давлении на бесконечности [2] Бесконечно большая масса однородной несжимаемой жидкости, на которую не действуют силы, находится в состоянии покоя. Жидкость внутри некоторой сферической поверхности мгновенно исчезает. Требуется найти мгновенное изменение давления в любой точке жидкости и время заполнения полости, полагая, что давление на бесконечности остается постоянным . Рэлей решил эту задачу с помощью уравнения энергии способом, отличным от более раннего решения Безанта, который использовал уравнения неразрывности и количества движения непосредственно. Однако Безант не развил свое решение и не применил его для исследования кавитации, как это сделал Рэлей. Сначала Рэлей вывел выражение для скорости и на произвольном радиальном расстоянии от центра каверны г, где г>7 (Я — радиус каверны). Через 11 обозначалась скорость поверхности каверны в момент времени t. В случае сферической симметрии радиальное течение безвихревое, его потенциал и скорость определяются выражениями  [c.124]

Это выражение выводится из нелинейного уравнения количества движения для безвихревого течения с постоянной энтропией, которое, как показано в учебниках по гидродинамике, означает, что градиент выражения (170) равен —дм1д1. Из этого следует, что изменение величины (170) при переходе через компактное сочленение пренебрежимо мало движение в резервуаре с заданным значением (170) в каждый момент времени I определяет давление р I) на конце трубы так, чтобы соответствующее значение выражения (170) (где иР = [1г( )] связано с Pe t) в соответствии с (168)) было одним и тем же. Однако на практи-  [c.183]


Смотреть страницы где упоминается термин Безвихревое движение. Уравнение для давления : [c.121]    [c.148]    [c.119]   
Смотреть главы в:

Теоретическая гидродинамика  -> Безвихревое движение. Уравнение для давления



ПОИСК



Движение безвихревое

Уравнения безвихревого движения

Уравнения для давления



© 2025 Mash-xxl.info Реклама на сайте