Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромоникелевые стали аустенитной структуры

Классификация 9 Хромоникелевые стали — Диаграммы состояния тронные 29 — Диаграммы структурные 31, 32 — Коррозионная стойкость 33, 34 — Механические свойства — Зависимость от влияющих факторов 30, 31 — Структура и склонность к охрупчиванию 32 Хромоникелевые стали аустенитные и аустенитно-ферритные 9, 22—28  [c.444]

Применяемые в настоящее время промышленностью нержавеющие, кислотостойкие и жароупорные стали в зависимости от структуры принято разделять на следующие основные группы хромистые стали мартенситного, ферритного класса, хромоникелевые стали аустенитного класса и сплавы. Для удобства выбора технологического режима резки и необходимой термической обработки до и после резки практически наиболее удобно классифицировать стали и сплавы по склонности их к межкристаллитной коррозии, а также к образованию трещин после резки. На основании обобщения производственного опыта ряда заводов и данных, полученных при лабораторных исследованиях, все высоколегированные хромистые и хромоникелевые марки стали могут быть разделены на четыре группы по их способности подвергаться кислородно-флюсовой резке.  [c.54]


Составы сталей, устойчивых против электрохимической коррозии, устанавливают с учетом среды, для использования в которой они предназначаются. Эти стали можно распределить на два основных класса хромистые, имеющие после охлаждения на воздухе ферритную или мартенситную структуру, и хромоникелевые, имеющие аустенитную структуру (ГОСТ 5632—61).  [c.289]

К аустенитно-ферритным сталям относят высоколегированные стали," основу структуры которых составляют две фазы аустенит и феррит. Количество каждой из них обычно 40... 60 %. В связи с этим признаком за рубежом такие стали называют дуплексными. Аусте-нитно-ферритные стали были разработаны как заменители хромоникелевых сталей аустенитного класса. Коррозионная стойкость этих сталей во многих агрессивных средах обеспечивается высоким содержанием хрома как правило, >20 %.  [c.75]

К структуре зоны термического влияния, а следовательно и к термическим циклам нагрева и охлаждения при сварке, предъявляются различные требования, которые зависят и от материала и от условий эксплуатации изделия. В результате несоблюдения необходимых режимов структура шва и зоны влияния может значительно ухудшиться, что приведет к снижению качества сварных соединений. Так, в малоуглеродистой стали существенного изменения свойств у зоны термического влияния обычно не происходит. Низколегированные и углеродистые конструкционные стали в результате слишком быстрого охлаждения и подкалки иногда значительно снижают пластичность. В закаленных сталях (перлитного и мартенситного класса) при излишне замедленном охлаждении может произойти отпуск зоны термического влияния. Длительный нагрев высоколегированных хромистых сталей ферритного класса приводит к укрупнению их зерна, снижению пластических свойств и коррозионной стойкости. Хромоникелевые стали аустенитного класса нельзя длительное время перегревать выше температуры распада аустенита, так как при этом нарушается однородность аустенитной структуры и теряется коррозионная стойкость.  [c.154]

Стали, устойчивые против электрохимической коррозии (ГОСТ 5632—72), можно разделить на два характерных класса хромистые, имеющие после охлаждения на воздухе ферритную или мартенситную структуру, и хромоникелевые с аустенитной структурой.  [c.226]

Особо большое распространение нашли стали системы Ре — Сг — N1 без дополнительных присадок и с присадками титана, ниобия, молибдена, меди и др. Введение никеля в систему Ре — Сг вносит значительные изменения в структуру сплава и расширяет область существования аустенита. В зависимости от содержания хрома и никеля в сплаве, хромоникелевые стали подразделяются на аустенитные, аустенито-ферритные и аустенито-мартенситные.  [c.218]


Оптимальные свойства сталей с 20—23% Сг получают при их одновременном легировании N2 (0,25—0,36%) и N1 (4—5%) при этом образуется аустенитная структура, близкая к структуре хромоникелевых сталей.  [c.267]

Легирование хромоникелевых сталей изменяет положение фаз а, V и а+у на диаграмме состояния. Эффективность действия легирующих элементов на образование ферритной или аустенитной структуры различна. Так, повышение содержания Сг, Т1, N6, 81, Та. А1 и Мо приводит к увеличению ферритной фазы, а увеличение содержания N1, N2, С и Мп способствует расширению области аустенита и его большей устойчивости.  [c.269]

Часто в хромоникелевых сталях, особенно в стабилизированных сталях 18/8, наряду с аустенитом имеется б-феррит. Он может быть выявлен обычными реактивами для хромистых, хромоникелевых и никелевых сталей. Но при этом б-феррит тем труднее определить, чем меньше его доля в структуре (менее 5%). В этом случае для выявления б-феррита применяют некоторые карбидные травители. Хранитель 90 окрашивает его в коричневатый цвет при 60—70° С в течение -40 мин. Подобное окрашивание наступает в горячем (60—70° С) растворе 91 после 15—20-мин выдержки. Аустенитная матрица остается нетравленой, лишь карбиды и а-фаза темнеют соответственно через 5 и 15—20 с и окрашиваются в голубоватый цвет.  [c.139]

Никель. Никель добавляется к коррозионно-стойким сталям для повышения пластичности. Стали с достаточно большим количеством никеля имеют чисто аустенитную структуру и хорошо обрабатываются. Кроме того, никель в ряде сред повышает коррозионную стойкость сталей. Но повышение содержания никеля, как правило, увеличивает восприимчивость хромоникелевых сталей к МКК. Под влиянием больших количеств никеля даже исчезает преимущество сталей с повышенным содержанием хрома. Так, сталь с 25 % Сг, имеющая чисто аустенитную структуру за счет увеличения количества никеля, не отличается от сталей типа 18-8 по предельному содержанию углерода, не вызывающему склонность к МКК [26]. Поэтому для уменьшения склонности к МКК не следует чрезмерно повышать количество никеля в коррозионно-стойких сталях, если это не вызывается необходимостью.  [c.53]

В отдельных случаях бор вводится в аустенитную сталь в значительных количествах, превышающих расчетные добавки, обычно применяемые при микролегировании. В аустенитной структуре такой стали образуются изолированные боридные фазы. Химический состав ряда борсодержащих хромоникелевых сталей приведен в табл. 41. Содержание в них бора составляет 0,2—0,7%.  [c.157]

К первой группе относятся сталь малоуглеродистая, высокохромистая и хромоникелевая - со стабильной ферритной или аустенитной структурой.  [c.354]

Основная структура большинства сплавов, приведенных в табл. IV, V и VI, например, сплавов на основе кобальта, аустенитных и хромоникелевых сталей, представляет собой твердый раствор аустенита.  [c.209]

Большинство конструкционных материалов представляет собой сплавы, из которых возможна избирательная диффузия отдельных компонентов в жидкий металл и обеднение контактной поверхностной зоны твердого металла более легко растворимым элементом. Примеры такой селективной коррозии довольно часто встречаются в инженерной практике, причем не только в результате коррозионного воздействия жидких металлов, но и в водных растворах. Известно, например, когда после промежуточного отжига прокатанных латунных изделий в результате травления в растворе серной кислоты поверхность их обогащается медью из-за избирательного удаления цинка. Действие жидких свинца, висмута и их сплавов на хромоникелевые стали вызывает избирательную диффузию никеля в жидкий металл и это часто приводит к переходу аустенитной структуры стали в ферритную [90, 91]. Как указывалось выше (см. гл. 1), возможна и межкристаллитная коррозия из-за большей поверхностной энергии на границе двух зерен твердого металла [92, 93].  [c.301]

Двухфазная структура "аустенит - феррит" во многом определяет технологические свойства сталей этого класса. Так, например, удается проводить их горячую пластическую деформацию без образования трещин в ходе прошивки трубных заготовок, если содержание ферритной фазы не более 25 %. В то же время в про.мышленных плавках аустенитных хромоникелевых сталей количество феррита может достигать 30 % и более в  [c.28]


С термической обработкой, пластической деформацией, сваркой может быть связано возникновение внутренних напряжений (которые в дальнейшем способствуют коррозии), а также неблагоприятных изменений в структуре металла (например, выделение карбидов хрома на границах зерен около сварных швов при сварке аустенитных хромоникелевых сталей, которое часто приводит к развитию межкристаллитной коррозии).  [c.52]

Кинетика превращния аустенита. Способность аустенита к переохлаждению ниже критических температур i4i и Лз (см. рис. 79, б), позволяет фиксировать его неустойчивое (переохлажденное) состояние И изучать кинетику его превращения в феррито-цементитную смесь. В некоторых сталях (например, хромоникелевые нержавеющие стали) аустенитную структуру можно фиксировать до температуры 20° С.  [c.113]

В связи с интенсивным развитием машиностроительной промышленности потребность в сталях для работы при высоких температурах постоянно возрастает. Однако возможности использования высоколегированных хромоникелевых сталей аустенитного класса для этих целей ограничены из-за дефицитности никеля. Внимание исследователей уже длительное время привлекает проблема применения аустенитных сталей на хромомарганцевой основе в качестве жаростойкого материала. Но до настоящего времени хромомарганцевые стали не кашли широкого применения. В малоуглеродистых хромомар-гзнцевых сталях нельзя получить однофазную аустенитную структуру при содержании хрома свыше 13%, что в свою очередь ограничивает возможность повышения коррозионной стойкости. Поэтому стали системы Fe—Сг—Мп, работающие при высоких температурах, необходимо дополнительно легировать аустенитообразующими элементами, позволяющими вводить повышенное количество хрома с сохранением аустенитной структуры.  [c.102]

Совокупность изменений структуры материала, вносимых облучением, называют радиационным повреждением. Отрицательное следствие радиационных повреждений — охрупчивание, а также радиационное распухание и радиационная ползучесть, вызывающие изменение формы и размеров. Поэтому одно из основных требований, предъявляемых к облучаемым материалам, — их высокая радиационная стойкость (см. п. 8.1.2). Главные конструкционные материалы энергетических ядерных реакторов — стали перлитного класса (корпуса во-до-водяпых реакторов на тепловых нейтронах) и хромоникелевые стали аустенитного класса (детали активной зоны и внутрикорпусных устройств в реакторах на тепловых и быстрых нейтронах, оболочки твэлов и корпуса быстрых реакторов).  [c.341]

Наибольшее распространение получила хромоникелевая сталь аустенитного класса с присадкой титана (марки Х18Н9Т). Эта сталь после закалки с 1050—1100° С в воде приобретает однофазную структуру легированного аустенита. В закаленном состоянии сталь марки Х18Н9Т обладает низкой прочностью, высокой коррозионной устойчивостью и пластичностью, хорошо деформируется и сваривается. Для повышения прочности эту сталь подвергают пластическому деформированию и поставляют в наклепанном — нагартованном или полунагартованном состоянии.  [c.184]

ВЛИЯНИЕ ИСХОДНОЙ СТРУКТУРЫ НА РАДИАЦИОННОЕ УПРОЧНЕНИЕ АУСТЕНИТНОЙ ХРОМОНИКЕЛЕВОЙ СТАЛИ ОХ18Н10Т  [c.100]

Никель является сильным аутенитообразующим элементом. Железо и никель при затвердевании образуют у-твердый раствор в широком интервале концентраций. Влияние никеля на повышение жаростойкости хромоникелевой стали проявляется в повышении механических свойств при высоких температурах в результате наличия аустенитной структуры, в увеличении плотности оксидной пленки, усилении ее сцепления с основным металлом. Степень влияния никеля на жаростойкость непрерывно увеличивается с ростом температуры.  [c.49]

С целью экономии дефицитного никеля часть его может быть заменена марганцем или азотом. При этом Структура стали может сохраниться аустенитной либо перейти в аустенитно-ферритный или аустенитно-мартенситный класс. Экономнолегированные хромоникелевые стали по коррозионной стойкости не уступают сталям типа 18—8 и могут полноценно их заменять.  [c.32]

Еще большую коррозионную стойкость имеют хромоникелевые кислотостойкие стали с аустенитной структурой I2X18H9 и 12Х18Н9Т. Последняя противостоит МКК.  [c.42]

Травитель 5а [10—15 мл НС1 85—90 мл Н2О]. Травитель 56 [3 мл НС1 50 г Fe la 120 мл спирта 120 мл Н2О]. Первичная структура аустенитных хромоникелевых сталей, а также хромистых трудно выявляется, особенно после сильной деформации. Ролласон [5] обнаружил это при травлении реактивами 5а и 56, которыми образцы химически полируются или протираются с помощью ватного тампона. Вторичная структура выявляется в 12—14%-ных хромистых сталях. Длительность травления зависит от обработки И состава стали.  [c.103]

Подобный эффект оказывает реактив 16 (см. гл. V) для выявления фосфора, рекомендованный в работе [8]. По данным Халт-грейна и Лиллиеквиста [9], в аустенитных хромоникелевых сталях, которые переходят 8-область на диаграмме состояния, вначале проявляются первичные дендриты. При более длительном травлении на структуре проявляются вторичные аустенитные зерна После травления в течение нескольких часов вновь появляется пер вичная структура вследствие образования связанного слоя меди -Травитель 16 (см. гл. V) является лучшим из всех содержа щих медь растворов для выявления первичной структуры нержа веющих хромистых сталей. Он может также применяться для аустенитных хромоникелевых сталей.  [c.104]

Склонность к МКК у коррозионно-стойких хромоникелевых сталей появляется в случаях, когда материалы с аустенитной структурой после закалок с высоких те.мператур подвергаются отпуску плп медленному охлаждению в температурном интервале 450—850 С. Подобную термическую обработку называют прово-цирующи.м, или сенсибилизирующим отпуском, а материалы сенсибилизированными.  [c.46]


Молибден. Молибденом обычно легируют хромоникелевые коррозионно-стойкие стали для увеличения их способности к само-пассированию и повышению коррозионной стойкости в неокислительных и слабовосстановительных средах. Часто молибденсодержащие стали применяют в средах, вызывающих МКК. В стали, легированные молибденом для сохранения аустенитной структуры (молибден-ферритообразователь), вводится повышенное количество никеля. На каждый 1 % Мо вводится дополнительно 1,7 % N1.  [c.55]

Хромомарганцевые стали, разработанные Институтом металлургии АН ГССР, по сравнению с хромоникелевым сплавом (Х18Н9Т) содержат хрома на 3—5% меньше. Для стабилизации аустенитной структуры в сплавах этого типа вводится азот в количестве до 0,4%. Хромомарганцевые сплавы по своим физико-химическим свойствам приближаются к хромоникелевым, а по некоторым другим даже превосходят их. Химический состав и механические свойства хромомарганцевых сплавов приведены в табл. IV. 1, IV. 2.  [c.61]

Коррозионностойкие стали подразделяются на хромистые, хромоникелевые, хромомарганцевые и хромомарганцевоникелевые стали. По структуре коррозионностойкие стали могут быть аустенитно-го, ферритного, аустенито-ферритного, мартенситного и мартенсито-ферритного классов. Наиболее опасными видами коррозии коррозионностойких сталей являются питтинговая, язвенная и щелевая коррозии в кислых и в нейтральных растворах хлоридов, межкрис-таллитная коррозия, коррозионное растрескивание в горячих растворах хлоридов.  [c.69]

Нержавеющие, жаростойкие и жаропрочные хромоникелевые стали с аустенитной или аустенитно-мартенситной структурами (Х18Н9Т, Х23Н18, Х15Н9Ю). Скорости резания, которые допускаются при обработке деталей из этих сталей, примерно в 2 раза ниже, чем при обработке деталей из стали 45. Стали этой группы характеризуются наилучшей обрабатываемостью среди других жаропрочных сталей аустенитного класса.  [c.34]

В химической промышленности и нефтехимии находят широкое применение сосуды из нержавеющих хромоникелевых аустенитных сталей с содержанием хрома 18% и никеля 8—12 %. Никель способствует повышению коррозионной устойчивости. При содержании более 9 % он обеспечивает стабильную аустенитную структуру. Чем меньше в этих сталях углерода, тем лучше их свариваемость и стойкость против межкристаллитной коррозии. С целью повышения стойкости против межкристаллитной коррозии в эти стали вводят титан, который связывает углерод в стабильные карбиды титана и снил<ает таким образом содержание  [c.112]

Нержавеюш.ие хромоникелевые наплавленные стали обладают высокой эрозионной стойкостью в том случае, если они имеют мартенситную, аустенитно-мартенситную или аустенитную структуру с нестабильным аустенитом, т. е. стали переходного класса. Такая с т(руктура в наплавленном металле обеспечивается при содержании хрома от.12 до 16% и никеля от 4 до 8%. Дополнительное легирование наплавленного металла такого состава аустенитообразующими или ферритообразующими элементами может изменить соотношение между содержанием хрома и никеля.  [c.86]

Для хромоникелевых сталей с содержание.м хрома до 20% достаточно 8-10% Ni, для перевода структуры TaiiH из ферритной (характерной для хромистых сталей) или аустенито-ферритной (содержащей Ni до 8%) в более гомогенное аустенитное состояние во всем диапазоне температур, вплоть до плавления. Это обеспечивает меньшую склонность к росту зерна, лучшие. механические свойства, эффективно понижает порог хладноломкости, делает сталь более коррозионностойкой. Никель, так же, как и хром, образует с железо.м твердые растворы при всех пропорциях компонентов, поэтом сталь легко пассивируется на воздухе, обеспечивая высокую коррозионную стойкость в слабоокисляющих и неокисляющих растворах. В соответствии со структурой и содержанием основных легирующих элементов (-18% Сг и от 8 до 10% Ni) такие отечественные стали принято соответственно называть аустенитные хромоникелевые коррозионностойкие (нержавеющие) стали типа 18-8, 18-9, 18-10", а в сокращенном современном варианте - стали типа 18-10 .  [c.82]

Азот в виде при.месей или дополнительное легирование им в концентрации -0,15% оказывает благоприятное влияние на коррозионное поведение хромоникелевых сталей, способствуя расширению у-области. Чем выше содержание азота в хромоникелевой стали, тем меньше требуется никеля, чтобы сделать структуру стали полностью аустенитной. Введение -0,1,5% N заменяет от 2 до 4% Ni и испо.иьзуется в качестве присадки, в основном для стали типа 18-8, что повышает устойчивость аустенита при холодной деформации стали. В концентрациях 0,15-0,25% азот образует в сплавах Fe- r и Fe- r-Ni избыточные фазы нитридов типа шпинели (Fe r)4N (а-фаза) и r N, что сдвигает стационарный потенциал стали в сторону более положительных значений, а образующиеся нитриды представляют эффективный катод, облегчающий пассивацию сплава.  [c.83]

Коррозионно-стойкие стали. Составы сталей, устойчивых к электрохимической коррозии, устанавливают в зависимости от среды, для которой они предназначаются. Эти стали можно разделить на два основных класса хромистые, имеющие после охлаждения на воздухе ферритную, мартенситно-ферритную (феррита более 10 %) или мартенситную структуру, и хромоникелевые, имеющие аустенитную, аустенитно-мартенситную или аустенитноферритную (феррита более 10 %) структуру (ГОСТ 5632—72).  [c.292]

Хромоникелевые стали и сплавы классифицируют по типу структуры, составу легирующих элементов, свойствам и назначению. В зависимости от состава вьщеляют хромомарганцевые, хромоникельмолибденовые и хромоникельмарганцевые стали. В соответствии со структурой, получаемой при охлаждении на воздухе, различают следующие классы сталей аустенитно-мар-тенситные, аустенитно-ферритные и аустенитные.  [c.247]

Приводимые в некоторых литературных источниках методы расчетно-экспериментального определения режимов сварки основаны на изучении уже готовых сварных соединений (определение F и F , уо и у ). Для определения химического состава шва нужно также учесть металлургические процессы (легирование или угар тех или иных элементов). В литературе они приводятся в общем виде, на практике же могут значительно различаться. Таким образом, имея экспериментальный шов, проще и точнее можно провести химический анализ металла. При этом, зная химический состав металла шва и термический цикл сварки, можно судить о его механических и других свойствах, а с учетом теплового цикла в ЗТВ и о свойствах сварного соединения в целом. Структура металла и его свойства определяются с помощью термокинетических и изотермических диаграмм распада аустенита. Для высоколегированных, хромоникелевых и аустенитных сталей фазовый состав металла можно приблизительно определить по диаграмме Шеффлера. Более подробные сведения приво-  [c.241]


Смотреть страницы где упоминается термин Хромоникелевые стали аустенитной структуры : [c.360]    [c.250]    [c.139]    [c.40]    [c.283]    [c.128]    [c.97]    [c.171]    [c.185]   
Смотреть главы в:

Коррозионная стойкость материалов  -> Хромоникелевые стали аустенитной структуры



ПОИСК



I--- хромоникелевых аустенитных

Аустенитные стали

Стали Структура 121 —

Хромоникелевые

Хромоникелевые стали

Хромоникелевые стали аустенитные

Хромоникелевые стали структура



© 2025 Mash-xxl.info Реклама на сайте