Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение запасов прочности деталей ГТД

Х1.6. Диаграмма предельных амплитуд и определение запасов прочности деталей из квазихрупких материалов при чистом сдвиге и одноосном напряженном состоянии  [c.345]

При определении запасов прочности деталей с незначительной концентрацией  [c.452]

При определении запасов прочности деталей с незначительной концентрацией напряжения или деталей больших размеров, особенно из хрупких материалов, должны приниматься во внимание максимальные величины статической составляющей напряжений, т. е. коэффициент концентрации относится также к или соответственно.  [c.501]


В последнее время получило распространение также определение запасов прочности деталей по статическим (или динамическим) напряжениям, вызывающим рост трещин до критического размера (см. п. 7.5), а также запасов прочности по размахам полных деформации, вызывающим образование трещин в детали при заданной программе термоциклического нагружения (см. п.п. 7.1, 7.3).  [c.532]

Однако, если максимальные расчетные напряжения незначительно меньше предельных, то гарантировать прочность детали рискованно, так как далеко не всегда бывают точно известны действующие нагрузки, сам расчет может носить приближенный характер, и, наконец, могут иметь место некоторые отклонения действительных механических характеристик материала по сравнению с принятыми в расчете. Для надежной работы деталь должна обладать определенным запасом прочности.  [c.285]

Новые и важные результаты, достигнутые по общим методам теории малых упруго-пластических деформаций и решение конкретных задач о напряженных состояниях за пределами упругости (Н. М. Беляев, А. А. Ильюшин), предопределили успешное их применение в практике расчета высоконапряженных деталей турбин, химических и энергетических агрегатов высокого давления, а также при проектировании технологического оборудования. Это способствовало более полному использованию материала в деталях и обеспечивало более правильное определение запасов прочности.  [c.37]

Прежде чем рассчитывать деталь на прочность, необходимо правильно определить вид напряженного состояния, в котором она будет находиться в процессе эксплуатации. Расчет на прочность, в сущности, заключается в определении запаса прочности (коэффициента безопасности). Запас прочности в каждом конкретном случае должен подбираться в зависимости от предполагаемых условий эксплуатации и свойств материала. Практика показывает, что величина общего коэффициента запаса прочности может колебаться в пределах 1,3—6. Если расчет производится без учета динамичности нагрузки, то величина коэффициента запаса прочности может быть увеличена до 15. Большой диапазон изменения коэффициента запаса свидетельствует о том, что при расчете на прочность иногда не представляется возможным точно учесть влияние активных факторов, таких как динамичность нагрузки, однородность свойств материала, влияние конструкции напряжений.  [c.143]


Важное значение для повышения надежности имеет выбор запаса прочности деталей машин. Коэффициент запаса прочности еще недавно выбирали применительно к трем типовым случаям нагружения 1) спокойного, статического 2) переменного — от нуля до максимального 3) переменного — от наибольшего положительного до отрицательного определенной величины. Коэффициент запаса прочности конструктор выбирал, основываясь на собственном опыте или опыте заводского или специального конструкторского бюро, в котором создавалась машина.  [c.143]

Заготовка, как правило, имеет то или иное количество элементов. Каждый из этих элементов выполняет самостоятельную функцию. Наиболее эффективным путем повышения надежности заготовок является повышение надежности их элементов. Так, например, надежность литой детали может быть повышена созданием более рациональной конструкции ее элементов, применением новых, более совершенных материалов, обладающих повышенными литейными (технологическими) свойствами, коренным улучшением технологии производства, налаживанием контроля и др. Надежность работы деталей машин определяется расчетом их на прочность, предел выносливости, изгиб, срез и т. д. Наиболее трудной задачей при расчете прочности является определение запаса прочности заготовки. Запас прочности И , часто выражается следующим образом  [c.346]

В зависимости от условий эксплуатации деталей, механических свойств материала и типа напряженного состояния предельные нагрузки для них по разрушению, перемещениям или деформациям могут иметь различную величину. Для определения запаса прочности принимается наименьшая из предельных нагрузок.  [c.486]

Существующие статистические методы определения запаса прочности начинают находить применение для деталей, о работе которых имеется большой статистический материал, в частности натурные испытания деталей на разрушение при номинальных параметрах, включая нагрузки [7]. Однако для основных деталей паровых турбин указанный метод не получил распространения из-за чрезвычайно больших трудностей при получении достоверных статистических данных.  [c.28]

Даны экспериментальные исследования выносливости сталей в коррозионной среде, при асимметричном и двухчастотном нагружении. Изложены теоретические и экспериментальные данные о влиянии параметров нагружения на изменение выносливости при двухчастотном нагружении. Приведены аналитические зависимости для прочностных расчетов и определения запасов прочности на усталость деталей гидротурбин.  [c.2]

Измерение усилия прокатки необходимо для определения действительного запаса прочности деталей и узлов прокатного стана, правильной загрузки главного электродвигателя, оценки точности готового проката и т. д. Рабочая клеть является упругой системой. Измерение усилия прокатки связано с измерением упругих деформаций деталей рабочей клети. Упругая деформация металлического образца площадью поперечного сечения S и длиной / при действии силы Р согласно закону Гука равна A/ PZ/S , где Е — модуль упругости материала образца.  [c.264]

Определение коэффициента запаса прочности. Деталь (пружина) может перейти в предельное состояние по усталости и по причине развития пластических деформаций. Коэффициент запаса прочности по усталости определяются по формулам (9.10)  [c.184]

Определение запасов прочности при сочетании изгиба с кручением. Пусть деталь нагружается так, что в поперечной площадке, проведенной через опасную точку, возникают одновременно и нор-  [c.431]

Расчет на прочность деталей двигателя, подверженных действию переменных нагрузок, заканчивается определением запасов прочности этих деталей.  [c.55]

При определениях запасов прочности пластмассовых деталей довольно широко применяют метод поправочных коэффициентов, учитывающих влияние различных факторов на прочность и деформируемость детали.  [c.110]


Чтобы быть уверенным в надежной работе детали, ее размеры выбирают такими, чтобы возникающие напряжения были меньше предела прочности материала рассчитываемой детали и меньше предела текучести, т. е. рассчитывают на прочность с определенным запасом. Рассчитанная деталь должна надежно выдерживать расчетные нагрузки длительное время. Например, при расчете стальных канатов Правила Госгортехнадзора обязывают иметь запас прочности от 3,5 до 6. Трубы поверхности нагрева заводами-изгото-вителями рассчитывают на прочность по допускаемому напряжению, равному 0,4 от предела прочности, т. е. с запасом прочности 2,5.  [c.93]

Расчет на прочность и выбор запаса прочности деталей грузоподъемников имеет те же основания, что и расчет деталей общего назначения, изучаемых в предыдущих главах раздела Детали машин . Особенностью расчета деталей грузоподъемных устройств являются более точно определенные величины внешних нагрузок, так как этот тип машин служит главным образом для преодоления силы тяжести, имеющей определенную величину и направление.  [c.401]

При расчете деталей из термореактивных пластмасс, работающих в условиях ста тического нагружения, можно применять упрощенную формулу для определения запаса прочности, по которой  [c.147]

Настоящей методикой предусматривается дифференциальный метод определения запасов прочности и допускаемых напряжений деталей, основанный на установлении общего запаса прочности для рассчитываемой детали в зависимости от степени ответственности детали и характера загрузки механизма.  [c.19]

Расчет на усталость в больщинстве случаев выполняют как проверочный. Как и при расчете на статическую прочность цель проверочного расчета заключается в определении коэффициента запаса прочности в опасной точке рассчитываемой детали и сравнении его с нормативным. Прочность детали считается обеспеченной, если ее коэффициент запаса прочности не меньше требуемого (нормативного). При вычисления коэффициента запаса прочности деталей, находящихся под воздействием статических нагрузок, механические свойства материала детали отождествлялись с механическими свойствами материала образца, т. е. считалось, что поведение материала образца и материала детали будет одинаковым, если в них возникнут равные номинальные напряжения независимо от различия в форме и размеров образца и детали. Поскольку, как ранее было выяснено, при переменных напряжениях на предел выносливости материала существенное влияние оказывают и форма, и размеры поперечных сечений образцов, и шероховатость их поверхности, то, естественно, рассчитывая на сопротивление усталости конкретные, реальные детали, размеры и форма которых отличаются от стандартных образцов, необходимо учесть все факторы, снижающие сопротивление усталости.  [c.298]

У ж и к Г. В., Определение запаса прочности при несимметричных циклах изменения напряжений в деталях машин, Вестник машиностроения № 5, 1944.  [c.761]

Из всех перечисленных требование обеспечения минимальных габаритных размеров и массы является характерным для любых систем летательного аппарата и в том числе для его силовой установки и двигателя непосредственно. И поскольку относительная масса компрессора (отношение массы компрессора к массе двигателя) составляет 0,35. .. 0,50, разработка легкого компрессора — одна из важнейших проблем, стоящих перед создателями авиационных двигателей. При этом необходимо исходить из того, что выбор конструктивной компоновки компрессора, его газодинамических и конструктивных параметров, допустимых значений запасов прочности деталей и наиболее приемлемых материалов определяется назначением ГТД (использованием на летательном аппарате определенного типа).  [c.51]

Однако для сравнительно малонагруженных деталей, неупругие деформации в которых малы, определение запасов прочности по критериям типа  [c.554]

Факторы, влияющие на запас прочности, многочисленны и разнообразны степень ответственности детали, однородность материала и надежность его испытаний, точность расчетных формул и определения расчетных нагрузок, влияние качества технологии, условий эксплуатации и пр. Если учесть все разнообразие условий работы современных машин и деталей, а также методов их производства, то станут очевидными большие трудности в раздельной количественной оценке влияния перечисленных факторов на значение запасов прочности. Поэтому  [c.7]

Для того чтобы деталь обладала необходимой надежностью и работала безотказно, необходимо создать требуемый запас прочности по отношению к экспериментально определенным величинам предельных напряжений, при которых может разрушиться деталь или возникнуть пластическая деформация.  [c.139]

Прочность деталей при переменных напряжениях зависит от конструктивного оформления, технологии изготовления, а также условий эксплуатации. Поэтому расчет на прочность при переменных напряжениях носит поверочный характер и заключается в определении ко )-фициента запаса. Оценивают коэффициенты запаса в процессе проектирования с учетом конкретных технических и экономических условий.  [c.266]

Уточненный проверочный расчет валов на усталость исходит из предположения, что нормальные напряжения изменяются по симметричному, а касательные — по асимметричному циклу. Этот расчет заключается в определении фактического коэффициента запаса прочности в предположительно опасных сечениях с учетом характера изменения напряжений, влияния абсолютных размеров деталей, концентрации напряжений, шероховатости и упрочнения поверхностей. Условие сопротивления усталости имеет вид  [c.217]


Величина запасов прочности при расчете на выносливость зависит от точности определений усилий и напряжений, от однородности материалов, качества технологии изготовления детали и других факторов. При повышенной точности расчета (с широким использованием экспериментальных данных по определению усилий, напряжений и характеристик прочности), при достаточной однородности материала и высоком качестве технологических процессов принимается запас прочности я = 1,3- 1,4. Для обычной точности расчета (без надлежащей экспериментальной проверки усилий и напряжений) при умеренной однородности материала п=1,4-ь1,7. При пониженной точности расчета (отсутствии экспериментальной проверки усилий и напряжений) и пониженной однородности материала, особенно для литья и деталей значительных размеров, п = = 1,7 3,0.  [c.678]

Сложные. циклы нагрева и нагружения деталей при расчете долговечности разделяют на участки, на каждом из которых накапливается статическое или усталоетное повреждение. Если цикл повторяется и нагружение не является случайным (например, существует типичный эксплуатационный цикл, в котором характер нагружения деталей машины всегда одинаков), то происходит пропорциональное нагружение материала деталей, при котором соотношение долей статического и циклического повреждений остается неизменным за весь ресурс работы [23]. Это позволяет использовать для анализа предельного состояния и определения запаса прочности представления о поверхности термоциклического нагружения (рис. 98). Для заданных условий нагружения (размаха деформаций Дед, длительности действия нагрузки Тд и ресурса долговечности Л/д) состояние детали характеризуется положением точки А относительно предельной поверхности разрушения. Длительность переходных процессов в цикле здесь исключена из рассмотрения для упрощения анализа, поэтому Тд=ТвЛ д, где Тв — длительность выдержки в цикле.  [c.170]

Методы получения общего коэффициента запаса прочности как произведения частных коэффициентов весьма рациональны по своей идее. Они позволяют конструктору отчетливо представить все основные факторы, влияющие на коэффициент запаса прочности. Однако применение этого метода для определения коэффициента запаса прочности деталей паровых турбин пока осложняется из-за отсутствия регламентации предложенных частных коэффициентов. В то же время необоснованный выбор частных коэффициентов, особеннно таких, как степень ответственности детали, точность расчетных формул и др., может в значительной мере исказить общий коэффициент запаса прочности. Коэффициенты совершенно не учитывают случаи частых пусковых режи Мов и термических напряжений.  [c.28]

Прп определении. запасов прочности часто используют результаты экспо-рпмеитальных псследований. Так как число испытаний неизбежно огранп-неио, то возникает вопрос о возможных значениях измеряемого параметр. для всей совокупности деталей. Например, требуется определить вероятность появления в лопатках турбомашин опасных переменных напряжений по данным тензометрирования 15—20 лопаток. Предполагаем, что закон распределения для рассматриваемой совокупности деталей является нормальным и тогда для расчета требуется знание среднего значения и среднего квадратичного отклонения.  [c.597]

Методы определения напряжений от посадки, разработанные для деталей, обладающих осевой симметрией, стали без должного обоснования применяться при расчете осеасимметричных деталей. Предполагалось, что получающиеся при этом погрешности идут в сторону запаса прочности деталей.  [c.3]

Определение запасов прочности при усталости для нестационарного нагружения. Детали машин в условиях эксплуатации часто нагружаются переменными напряжениями, амплитуда которых изменяется в процессе иагружеиия (нестационарное нагружение). При многоступенчатом нагружении (рис. 10, а) деталь работает иа нескольких уровнях нагружения. Непрерывное нагружение (рис. 10, б) характеризуется непрерывным изменением амплитуды действующих напряжений. При блочном нагружении (рис. 10, в) в каждом отдельном блоке осуществляется работа на разных режимах. Блочное нагружение типично для машии периодического действия.  [c.568]

Для дисков турбин и ободов направляющих аппаратов и ряда другах статорных деталей автоматизированное определение запасов прочности и остаточного ресурса может производиты я с использованием теории приспособляемости.  [c.526]

Расчеты при сложном напряженном состоянии. Изучение этого вопроса в основном связано с расчетами валов на сопротивление усталости, выполняемыми в курсе деталей машин. Обычно в сопротивлении материалов ограничиваются сообщением учащимся эмпирической формулы для определения общего коэффициента запаса прочности (так называемой эллиптической зависимости Гафа — Полларда) 1/п =1/По2-г1/щ или  [c.184]


Смотреть страницы где упоминается термин Определение запасов прочности деталей ГТД : [c.771]    [c.263]    [c.304]    [c.230]   
Смотреть главы в:

Конструкционная прочность материалов и деталей газотурбинных двигателей  -> Определение запасов прочности деталей ГТД



ПОИСК



Деталь определение

Диаграмма предельных амплитуд и определение запаса прочности детали из пластичного материала при одноосном напряженном состоянии

Диаграмма предельных амплитуд и определение запаса прочности детали из пластичного материала при чистом сдвиге

Диаграмма предельных амплитуд и определение запасов прочности деталей из квазихрупких материалов при чистом сдвиге и одноосном напряженном состоянии

Запас

Запас Определение

Запас прочности

Запас прочности 482 — Определение

Коэффициент запаса прочности 214 — Определение напряжений 175 — Влияние однородности материалов 175 — Влияние уровня технологии изготовления детали

Прочность Определение

Прочность детали



© 2025 Mash-xxl.info Реклама на сайте