Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационная формулировка задачи изгиба

Вариационная формулировка задачи изгиба. Будем исходить из представления касательных напряжений Ху , через функцию напряжений F  [c.437]

Отметим некоторые преимущества смешанной вариационной формулировки задачи (1.82), (1.83) по сравнению с классическим методом перемещений. При решении задач прикладной теории упругости и строительной механики методом конечных элементов сходимость решений в ряде случаев определяется реакцией элемента на смещения как жесткого целого и геометрической изотропией (когда не отдается предпочтение какому-либо направлению) аппроксимации деформаций. Плохая сходимость решений, в первую очередь, характерна для криволинейных элементов оболочечного типа, поскольку аппроксимация перемещений полиномами низкой степени является грубой для описания смещений как жесткого целого. Такие элементы могут накапливать ложную деформацию и вносить существенные погрешности в решение задач. При учете деформаций поперечных сдвигов и обжатия в многослойных оболочечных элементах учет смещения как жесткого целого становится особенно важным, поскольку при уменьшении параметра тонкостенности (A/i ) указанные деформации стремятся к нулю, а коэффициенты их вклада в общую потенциальную энергию стремятся к бесконечности. Таким образом, погрешности в вычислении деформаций усиливаются и могут дать значительную ложную энергию, превосходящую энергию изгиба или энергию мембранных деформаций. Независимая аппроксимация полей деформаций в пределах конечного элемента при использовании смешанного метода позволяет обеспечить минимальную энергию ложных деформаций и требуемый ранг матрицы жесткости.  [c.23]


Вариационную формулировку задачи об изгибе цилиндрического стержня представим в виде  [c.148]

Уравнениям (8.37) данного метода можно дать вариационную трактовку, если задача, описываемая исходным дифференциальным уравнением (8.33), допускает вариационную формулировку. Пусть это будет задача изгиба пластины. Тогда L (w) в (8.34) можно написать в виде двух слагаемых  [c.250]

Третье издание книги разбито на две части, часть А и часть В. Содержание части А, озаглавленной Формулировка вариационных принципов в теории упругости и пластичности , практически не отличается от первого издания, за исключением некоторых новых тем в гл. 5 и 7. Содержание части В, озаглавленной Вариационные принципы как основа методов конечных элементов , мыслится как улучшенное изложение приложения I второго издания. В этой части систематически излагаются классические вариационные принципы и модифицированные вариационные принципы со смягченными (ослабленными) требованиями непрерывности применительно к задачам статической теории упругости (теория малых перемещений и теория конечных перемещений) и динамической теории упругости, а также к теориям геометрической и физической нелинейности и теории изгиба упругих пластин. Последняя глава посвящается методам дискретизации и содержит вновь добавленное введение в метод граничных элементов.  [c.8]

Выражение (3) совпадает с вариационным функционалом применительно к задаче об изгибе пластины, в которой функция ф также должна быть непрерывной вместе с ее первыми производными. Тонг рассмотрел течение вязкой жидкости в канале, использовав вместо указанного подхода (с применением только функции тока) смешанную формулировку. Эта формулировка, развитая ранее для прямоугольных элементов при изгибе пластины, дает очень точные результаты. Описание упомянутой смешанной модели выходит за рамки данного примера, однако отметим, что аналогичные результаты могут быть получены при использовании для ф непрерывной функции второго порядка (см. 3.5 и 3.6).  [c.247]

Таким образом, получена вариационная формулировка задачи о температурном растяжении пластины. Аналогично тому, как это делалось в 8.4, можно получить вариационную формулировку и для задачи о температурном изгибе для этого следует использовать второй член правой части уравнения (8.90). Далее формулировки задач о температурном напряжении в пластине можно обобщить и на случай больших прогибов аналогично тому, как это делалось в 8.5. Эти вариационные принципы использовались в сочетании с методом Релея—Ритца для получения приближенных решений [21, 221. Температурные напряжения являются причиной таких явлений, как температурная потеря устойчивости или изменение жесткостей и частот колебаний пластин (23, 241.  [c.238]


Широко известно, что одним из первых математиков, принимавших участие в становлении МКЭ, был Курант. Он представил приближенный метод решения задачи кручения Сен-Венана с помощью принципа минимума дополнительной энергии, используя линейную аппроксимацию функции напряжений внутри каждого из совокупности треугольных элементов [1]. С другой стороны, наиболее важными и исторически первыми среди пионерских работ по МКЭ в задачах расчета конструкций считаются статьи Тёрнера, Клафа, Мартина и Топпа [2] и Аргириса и Келси [3]. После появления этих статей вариационный метод стал интенсивно использоваться в математических формулировках МКЭ. И обратно, быстрое развитие МКЭ сообщило мощный стимул к разработке вариационных методов за последнее десятилетие появились новые вариационные принципы, такие, как вариационные принципы со смягченными условиями непрерывности [4—8], принцип Геррмана для несжимаемых или почти несжимаемых материалов [9, 10] и для задач изгиба пластин [11, 12] и т. д. Цель части В состоит в том, чтобы дать краткий обзор достижений в области вариационных принципов, которые служат основой МКЭ в теории упругости и теории пластичности. С практическим использованием этих принципов при формулировке МКЭ читатель может ознакомиться по работам [5—7].  [c.340]

Задача о контактном взаимодействии берегов трещины конечной длины в плоскости при статическом действии нагрузки впepвыeJpa -смотрена в [262, 263]. В дальнейшем контактные задачи для тел с"трещинами при статическсш нагружении рассматривались многими авторами [32, 35, 55, 75—82, 90—94, 118, 227, 228, 281, 282, 301, 385, 395, 446, 447, 476, 564]. Задача об изгибе полосы с трещиной при учете контакта берегов решалась в (221—225, 287]. Трещины с контактирующими берегами в анизотропных средах рассматривались в [120, 361, 362]. Контакт тела, содержащего трещины, со штампом изучался в [199, 200]. В работах [75, 77, 80, 433, 434, 457, 458, 573] кроме плотного контакта учитывается возможность образования областей сцепления и скольжения. Контакт берегов трещин в температурных полях рассматривался в [91, 168, 170, 171, 193], а задача о контакте берегов сквозной трещины в изгибаемой пластине и пологой оболочке — в [411] и [412]. Этот подход распространен в [135] на случай произвольного динамического нагружения изгибаемой пластины со сквозной трещиной. Некоторые модельные динамические контактные задачи для тел с трещинами в идеализированной постановке рассмотрены в [336, 342, 344]. В работах [34, 75, 86, 365, 486 и др.] дана вариационная формулировка контактных задач для тел с трещинами. Обзор работ по статическим контактным задачам для тел, содержащих трещины, представлен в [168, 171].  [c.62]

Здесь мы рассмотрим несколько задач на плоскости, или, вернее, в области Q на плоскости, ограниченной гладкой кривой Г. Нашей целью в первую очередь будет сопоставление с дифференциальным видом этих задач, содержащих оператор Лапласа А и бигармонический оператор А , эквивалентной вариационной формулировки. Это означает, что в вариационной постановке мы должны подобрать допустимые пространства, в которых ищется решение. Естественно, что эти пространства зависят от краевых условий, и, как и в случае одномерной краевой задачи, условия Дирихле (главные условия) будут отличаться от условий Неймана (естественных условий). Примеры привести очень легко, но они представляют собой простейшие модели плоского напряженного состояния и изгиба пластины, так что полезнее еще раз проиллюстрировать основные идеи  [c.81]


Смотреть главы в:

Теория упругости  -> Вариационная формулировка задачи изгиба



ПОИСК



336 —-задачи об изгибе с задачей

Вариационные формулировки

Задача вариационная (задача

Ряд вариационный

Формулировка задачи



© 2025 Mash-xxl.info Реклама на сайте