Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обрабатываемость конструкционных материалов резанием

ОБРАБАТЫВАЕМОСТЬ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ РЕЗАНИЕМ  [c.319]

Обрабатываемость конструкционных материалов резанием  [c.320]

Повыщение эффективности использования режущего инструмента требует дальнейшей разработки методик оптимизации режимов резания, учитывающих конкретные условия работы инструментов и заданных технико-экономических параметров. При этом необходимо осуществлять активное использование ЭВМ, что позволит перейти к непосредственному управлению процессом резания на станках с ЧПУ в условиях ГАП. Одной из первоочередных задач является выпуск общемашиностроительных нормативов по режимам резания, учитывающих современное состояние развития инструментального оснащения, оборудования и номенклатуры обрабатываемых конструкционных материалов.  [c.298]


Повышение жаропрочности конструкционных материалов, применяемых в современном машиностроении, достигается в основном путем увеличения в них содержания легирующих элементов. При этом ухудшается обрабатываемость этих материалов резанием. Знание характера влияния химического состава, структуры, физико-механических свойств, термической обработки и истирающей способности жаропрочных сталей и сплавов на их обрабатываемость позволяет в производственных условиях, еще до запуска деталей в обработку, приближенно определить для них режимы резания и машинное время.  [c.44]

Серый чугун, широко используемый для изготовления корпусных деталей, является хорошим конструкционным материалом, достаточно дешевым и обладающим хорошими технологическими свойствами (жидкотекучесть, обрабатываемость резанием). Механические, физические, технологические и другие свойства чугуна можно изменять в достаточно широких пределах, что значительно расширяет область использования этого материала.  [c.50]

Обрабатываемость резанием. В табл. 4 приведены основные данные по обрабатываемости основных конструкционных материалов.  [c.473]

Углеродистые стали представляют значительную группу конструкционных материалов они составляют 80 % общего объема продукции черной металлургии и применяются для изготовления различных металлоконструкций и изделий машиностроения. Стали обыкновенного качества (ГОСТ 380—88) и качественные (ГОСТ 1050—74, ГОСТ 4543—71) дешевы, имеют удовлетворительные механические свойства в сочетании с хорошей обрабатываемостью резанием и давлением [П, 15, 16, 17, 32].  [c.12]

Обрабатываемость материала резанием относится к технологическим свойствам конструкционных материалов и характеризует степень сложности  [c.592]

Общие положения н схемы обработки. Ультразвуковая абразивная обработка эффективна при обработке заготовок из конструкционных материалов, имеющих низкую обрабатываемость резанием, электрофизическим и электрохимическим методами. Это заготовки из хрупких и твердых неэлектропроводных, химически стойких материалов, таких, как стекло, кварц, керамика, ситалл, алмаз, полупроводники (германий, кремний, арсенид галлия), азотированных и цементированных сталей и др.  [c.609]

В машиностроении самыми распространенными и традиционно обрабатываемыми резанием являются металлические конструкционные материалы, поэтому в книге будут рассмотрены только процессы обработки металлов резанием на металлорежущих станках. Обработке резанием подвергают следующие металлы чугуны, стали, цветные металлы и их сплавы.  [c.29]


Помимо высокой надежности и конструктивной прочности конструкционные материалы должны иметь высокие технологические свойства — хорошие литейные свойства, обрабатываемость давлением, резанием, хорошую свариваемость. Конст-  [c.275]

Допустимую толщину среза (подъем на зуб или подача) предварительно выбирают, исходя из схемы резания, свойств обрабатываемого материала, шероховатости протянутой поверхности, состояния режущего лезвия. Минимально допустимая толщина среза щш = 0,02 мм. При повышенных требованиях к затачиванию режущих зубьев ащщ = = 0,01 мм. Максимально допустимая толщина среза с обеспечением 6—7-го классов шероховатости протянутой поверхности при обработке типовых конструкционных материалов по профильной или генераторной схемам резания с прямолинейным режущим периметром приведена в табл. 78.  [c.330]

Очень низкой обрабатываемостью обладают жаропрочные стали и сплавы. Это объясняется тем, что жаропрочные материалы имеют значительное количество легирующих элементов (в том числе титан и марганец), склонны к свариванию (к адгезии) с режущим инструментом, незначительно изменяют прочность при нагреве до температуры 800° С, имеют высокий предел прочности на сдвиг (в 2—3 раза выше по сравнению с конструкционной углеродистой сталью) у жаропрочных материалов высокий предел прочности сочетается с большой вязкостью, они способны к сильному упрочнению (наклепу) и имеет низкую теплопроводность. Все это вызывает при резании большие силы, высокую температуру (в 2—4 раза выше температуры при резании конструкционных сталей 69]), интенсивный износ режущего инструмента, большую шероховатость обработанной поверхности, т. е. низкую обрабатываемость этих материалов, а потому их относят к труднообрабатываемым.  [c.125]

Принято считать, что материал обладает хорошей обрабатываемостью, если при обработке этого материала резанием износ инструмента и силы резания незначительные, а стойкость инструмента и качество обработанной поверхности достаточно высокие. Резание материала, обладающего хорошей обрабатываемостью, характеризуется легким отделением стружки и высокой размерной точностью обработанных деталей. Поскольку показатели процесса резания, характеризующие обрабатываемость материала, в значительной степени зависят от качества материала инструмента, геометрии инструмента, режимов резания, то понятны те трудности, которые возникают при попытках количественного выражения этого свойства. Тем не менее количественная оценка обрабатываемости необходима для правильного выбора и производства конструкционных материалов.  [c.195]

Улучшение обрабатываемости сталей и сплавов. Увеличение рабочих параметров машин (давлений, температур, скоростей) привело к появлению новых конструкционных материалов, нержавеющих, жаропрочных сталей и сплавов и др. Обработка резанием многих з этих материалов весьма затруднительна.  [c.504]

Обработка резанием—одна из наиболее распространенных операций при изготовлении деталей из конструкционных материалов. В настоящее время до 80% деталей машин, аппаратов и приборов изготовляется методом снятия стружки. Большое разнообразие конструкционных материалов, применяемых в машиностроении, а также высокие требования к точности и качеству обрабатываемых поверхностей ставят перед технологами проблемы изыскания методов и средств наиболее производительной и экономически целесообразной обработки резанием.  [c.3]

Жаропрочные материалы имеют значительное количество легирующих элементов (в том числе титан и марганец), склонность к свариванию (к адгезии) с режущим инструментом, незначительное изменение прочности при нагреве до температуры 800°, высокий предел прочности на сдвиг (в 2—3 раза выше, по сравнению с конструкционной углеродистой сталью), сочетание высокого предела прочности с большой вязкостью способность к сильному упрочнению (наклепу) и низкую теплопроводность. Все это вызывает при резании большие силы, высокую температуру резания, интенсивный износ режущего инструмента, плохую чистоту обработанной поверхности, т. е. низкую обрабатываемость этих материалов, а потому их относят к труднообрабатываемым.  [c.231]


Впервые в учебнике по резанию рассматриваются вопросы, связанные с группированием конструкционных материалов по их обрабатываемости резанием, определением оптимальных режимов резания с учетом ряда ограничительных технико-  [c.3]

В соответствии с назначением технологической операции обработка заготовок из различных конструкционных материалов ведется с различными режимами резания. Режимы резания при точении зависят также от марки инструментального материала, из которых выполняется рабочая часть резца, и от материала обрабатываемой заготовки.  [c.166]

Современное развитие металлообрабатывающей промышленности характеризуется повышением требований к качеству обрабатываемых поверхностей, точности размеров и формы поверхностей деталей машин, производительности их изготовления. Неуклонно расширяется номенклатура конструкционных материалов, обладающих повышенными физикомеханическими или специальными свойствами. В последние годы осуществляется техническое перевооружение станочного парка машиностроительных предприятий, причем основной тенденцией является ускоренное внедрение станков с числовым программным управлением (ЧПУ), на базе которых организуются гибкие автоматизированные производства (ГАП), в перспективе обеспечивающие возможность перехода к работе в режиме безлюдной технологии. В связи с высокой стоимостью этого оборудования возрастают требования к совершенству и рациональности осуществляемых на нем процессов резания, а также к надежности режущего инструмента. Простои подобного оборудования или его нерациональное использование ведут к значительным экономическим потерям. Поэтому успешное решение задач, поставленных партией и правительством, по повышению уровня отечественного машиностроения возможно только при условии тщательного изучения теоретических основ металлообработки, а также последних достижений в этой области.  [c.297]

Процесс образования поверхностного слоя деталей при резании конструкционных материалов представляет собой комплекс сложных физических явлений. Исследованиями советских ученых установлено, что процессы стружкообразования и процессы формирования поверхностного слоя физически взаимосвязаны все факторы, ведущие к облегчению процесса стружкообразования и уменьшению объема пластической деформации срезаемого слоя, обычно вызывают улучшение качества обработанной поверхности. Кроме того, на процесс образования поверхностного слоя значительно влияют наростообразование, а также условия взаимодействия задних поверхностей инструмента и заготовки. По этому снижение сил трения по задним поверхностям инструмента вследствие применения охлаждающе-смазывающих жидкостей, а также доводка режущего инструмента улучшают качество обработанной поверхности. Применение охлаждающе-смазываю-щих жидкостей при чистовых операциях позволяет повысить чистоту поверхности примерно на один класс, а при отделочных процессах—до двух классов. Все характеристики качества поверхности в той или иной степени зависят от физико-механических свойств обрабатываемого материала, режимов резания, геометрии и износа инструмента. Более вязкие, пластичные материалы получают и более высокую деформацию обработанной поверхности [42—43, 57, 66, 98].  [c.70]

По удельной прочности титановые сплавы превосходят все ныне применяемые технические материалы. Они теплоустойчивы, коррозионно-стойки на воздухе, в морской воде, в кислотах и щелочах. Эти свойства способствуют все большему применению титановых сплавов в качестве конструкционных материалов в различных отраслях машиностроения. Однако титановые сплавы, обладая ценными конструкционными свойствами, характеризуются низкой обрабатываемостью резанием, которая связана со специфическими физико-химическими свойствами и особенностями структуры сплавов. Наиболее характерная особенность титана — очень низкая теплопроводность меньше чем у никеля в 4 раза, железа в 5 раз и алюминия в 13—16 раз. Теплопроводность титановых сплавов по сравнению с теплопроводностью технического титана уменьшается еще в 2 раза. Низкая теплопроводность способствует большому тепловыделению в зоне обработки и является основным фактором, влияющим на обработку резанием. Низкий модуль упругости титановых сплавов обусловливает при обработке их резанием возникновение значительного упругого последействия.  [c.69]

На современном этапе научно-технического прогресса прочность, вязкость и другие характеристики конструкционных материалов возрастают столь быстро, что инструментальные материалы, которыми располагает производство, в целом ряде случаев не позволяют осуществлять высокопроизводительную обработку заготовок. К тому же резание часто приходится вести в экстремальных условиях — по корке, по высокопрочным наплавкам, при больших сечениях среза и т. д., что усугубляет технологические трудности. В связи с этими особенностями современного производства в металлообработке наряду с другими методами интенсификации технологических операций развивается направление по повышению эффективности процесса резания путем временного снижения прочности обрабатываемого материала и изменения механизмов контактных процессов, протекающих на рабочих поверхностях инструмента. Такое влияние на обрабатываемый материал и контактные явления достигается комбинированием механической энергии процесса резания с одной или несколькими другими видами энергии— тепловой, электрической, химической, ультразвуковой, электромагнитной и т. д. — облегчающими проведение процесса резания и обеспечивающими повышение стойкости инструмента [17].  [c.3]

Жаропрочные и титановые материалы характеризуются при протягивании более низкой обрабатываемостью (по силе резания) в сравнении с обычными конструкционными сталями.  [c.366]


Титановые сплавы, благодаря своим уникальным свойствам, находят все более широкое применение в качестве конструкционных материалов не только в аэрокосмической, судостроительной и химической отраслях промышленности, но и на различных предприятиях машино- и приборостроения, например, в автомобилестроении. По обрабатываемости резанием титановые сплавы близки к коррозионно-стойким и жаропрочным сталям и сплавам. Высокая прочность и чрезвычайно низкие значения теплопроводности и температуропроводности (примерно в 4-5 раз меньшие, чем у малоуглеродистых сталей) часто становятся причинами интенсивного тепловыделения в зоне резания, а следовательно, структурно-фазовых превращений в поверхностном слое материала. Обработка заготовок из титановых сплавов сопряжена с опасностью образования растягивающих остаточных напряжений первого рода и усталостных трещин.  [c.266]

СОЖ для лезвийной обработки заготовок из медных сплавов. Лезвийная обработка заготовок из чистой (электротехнической) меди встречается редко ввиду большой ее вязкости. Если возникает такая необходимость, то предварительно заготовку подвергают нагартовке. Однако сплавы на основе меди - латуни и бронзы являются распространенными конструкционными материалами, из которых резанием лезвийными инструментами изготовляют детали широкой номенклатуры в различных отраслях машиностроения. Медные сплавы различны по механическим свойствам и обрабатываемости, которая колеблется от весьма высокой (автоматные латуни, свинцовистые бронзы) до очень низкой (электролитическая медь, бериллиевая бронза).  [c.269]

Тантал легко поддается холодной деформации, но деформации в горячем состоянии следует избегать, так как при нагреве металл взаимодействует с такими газами, как кислород, азот и двуокись углерода, в результате чего охрупчивается. Можно применять обработку резанием, но для получения при этом хорошего качества поверхности необходимо принимать особые меры. Высокая прочность, хорошая обрабатываемость и отличная коррозионная стойкость тантала позволяют изготовлять детали с очень тонкими стенками. Толщина обычно используемого в химическом оборудовании материала составляет 0,33 мм. Перечисленные свойства в сочетании со способностью поверхности тантала ускорять процессы образования пузырьков пара при нагревании жидкостей, а также формирования капель при конденсации паров делают этот металл идеальным конструкционным материалом для теплообменного оборудования, работающего в сильных кислотах.  [c.203]

Все большее применение находят труднообрабатываемые конструкционные материалы (высокопрочные, жаростойкие и жаропрочные стали и сплавы), имеющие низкую обрабатываемость резанием, что также повышает трудозатраты при обработке. Совершенствование существующих и создание новых методов и практических приемов обработки металлов резанием невозможно без использования достижений науки о резании металлов, которая является базой для этой отрасли технологии машиностроения. При проектировании технологического процесса изготовления деталей необходимо оценить эффективность созданного процесса, показателями которой являются  [c.3]

Применение в машиностроении новых труднообрабатываемых конструкционных материалов, повышение уровня автоматизации металлорежущих операций и создание самонастраивающихся систем, повышенные требования к точности и качеству обработки ставят перед наукой о резании металлов ряд проблем. Например, резание труднообрабатываемых материалов показало необходимость иного подхода к назначению режимов резания, чем традиционный. Резание пирофорных и ядовитых материалов предъявляет новые требования к выбору схемы обработки, режима резания, конструкции инструмента. Для обработки конструкционных материалов в космосе требуются новые методы, так как исключительно высокий вакуум разрушает окисные пленки и приводит к свариванию сверл, метчиков и других инструментов с деталью. При разработке самонастраивающихся систем и программного управления процессом резания на автоматических станках и линиях необходимо математическое описание влияния условий резания на основные характеристики процесса резания. Количество подобных проблем весьма велико. Важнейшей задачей теоретического плана является замена эмпирических формул для расчета сил и скоростей резання физическими формулами, использующими механические и теплофизические свойства обрабатываемого и инструментального материалов и характеристики процесса резания.  [c.5]

Резанию большинства конструкционных материалов при определенных условиях сопутствует явление, называемое наростообразованием. Под наростом (рис. 67 и 68) понимают клиновидную, более или менее неподвижную область материала обрабатываемой заготовки, расположенную у лезвия инструмента перед его передней поверхностью. Если образуется сливная стружка, то при определенных условиях нарост может достаточно прочно присоединиться к передней поверх-  [c.106]

Под обрабатываемостью материалов в широком смысле этого слова понимают способность материалов подвергаться резанию по ряду технологических показателей. К ним относятся допускаемая скорость резания, возникающие в процессе резания силы, шероховатость обработанной поверхности, тип стружки и условия ее отвода из зоны резания и т. п. Таким образом, обрабатываемость является важнейшим технологическим свойством всех конструкционных материалов.  [c.280]

Метод меченых атомов с успехом используется для изучения износо-стойьогти режущего инструмента, обрабатываемости конструкционных материалов, для установления рациональных режимов резания и выбора инструментальных материалов.  [c.4]

Возможные пути улучшения обрабатываемости конструкционных материалов снижение температуры плавления сплавов снижение коэффициента трения материала заготовки предварительная термическая обработка заготовок (отжиг, отпуск, нормализахщя и др.) изменение геометрии режущих инструментов и оптимизация режимов резания подбор смазы-вающе-охлаждающих жидкостей.  [c.320]

Для оценки прочности материалов используется целый комплекс механических характеристик. При выборе стали и других конструкционных материалов должны также учитываться их технологические свойства литейные качества, свариваемость, обрабатываемость резанием, возможность применения ковки и горячей штамповки, возможность применения термического и химико-термического упрочнения поверхности детали (закалки, цементацип, азотирования и пр.), притираемость. При оценке эксплуатационно-физических характеристик учитываются следующие свойства материалов коррозионная стойкость, износостойкость, кавитационно-эрозионная стойкость, отсутствие схватываемости (холодной сваркп) и задиров между сопрягаемыми поверхностями в рабочей среде, а в некоторых случаях учитывается присутствие (или отсутствие) легирующих элементов или компонентов сплава с интенсивной степенью радиоактивности и большим временем полураспада изотопов.  [c.21]

В табл. 5.4 приведены коэффициенты обрабатываемости резанием различных конструкционных материалов. За эталонную принята сталь 45 сав = 650 МПа, 179 НВ эталонная скорость резания при по-лучистовом точении этой стали твердосплавными резцами 135 м/мин при 60-минутной стойкости, эталонная скорость резания при точении резцами из быстрорежущей стали Р18 — 75 м/мин при 60-минут-ной стойкости.  [c.171]


Под технологичностью конструкщш изделия понимают совокупность свойств конструкции изделия, определяюнщх ее приспособленность к достижению оптимальных затрат при производстве, техническом обслуживании и ремонте для заданных показателей качества, объема выпуска и условий вьшолнения работ (ГОСТ 14.205-83). Важная роль в обеспечении технологичности конструкций изделий принадлежит технологическим свойствам конструкционных материалов, основными из которых являются свариваемость, паяемость, обрабатываемость давлением, литейные свойства, обрабатываемость резанием.  [c.92]

РЕБИНДЕРА ЭФФЕКТ — физико-хи-мич. влияние среды па механич. св-ва материалов, не связанное с коррозией, растворением и др. химич. процессами, Р. э. проявляется в понижении прочности и облегчении упругой и пластич. деформации под влиянием адсорбции (поглощения молекул из окружающей среды поверхностями, развивающимися в деформируемом теле). Р. э. проявляется у металлич. моно-и поликристаллов, полупроводников, ионных кристаллов, бетонов, стекол, горных пород и т. д. Величина Р. э. зависит от темп-ры, величины напряжения, способа нагружения, состава и структуры материала и резко зависит от времени нагружения. Наиболее сильно Р. э. проявляется в тех случаях, когда за время деформации, предшествующей разрушению, вновь возникающие поверхности успевают покрыться адсорбционными слоями. Это имеет место в процессах ползучести при длит, статич. нагружении, в процессах усталости. При переходе от моно- к поликристаллич. металлам Р. э. значительно ослабляется, т. к. облегчение деформации сосредоточивается в поверхностных слоях и не распространяется в глубь тела. Наибольшее понижение поверхностной энергии материалов (почти до нуля) вызывают расплавленные среды, близкие по мол. природе к деформируемому телу напр., если более тугоплавкие металлы и сплавы при нагружении находятся в среде жидких более легкоплавких металлов (в частности, наличие ртутной пленки на монокристаллах цинка уменьшает прочность и пластичность в десятки раз). Р. э. часто вреден для конструкционных материалов, т. к. понижает их прочность и пластичность. Для облегчения обрабатываемости резанием и для ускорения и улучшения ирирабатываемости при трении Р. э. полезен. Защита поверхности деталей от  [c.112]

Смазочно-охлаждающие технологические среды (СОТС) являются обязательным элементом большинства технологических процессов обработки материалов резанием. Точение, фрезерование, сверление, тл о-вание и другие процессы обработки резанием сталей, чугунов, цветных металлов и сплавов, неметаллических конструкционных материалов характеризуются большими статическими и динамическими нагрузками, температурами, истирающим воздействием обрабатываемого материала на режущий инструмент. В этих условиях основное назначение СОТС -уменьшить температуру, силу резания и износ режущего инструмента, обеспечить требуемое качество обработанной поверхности. Помимо этого СОТС должны отвечать гигиеническим и экологическим требованиям, обладать комплексом антикоррозионных, моющих, антимикробных и других эксплуатационннх свойств.  [c.1]

Обрабатываемость деталей -и з м е т а л л о. к е р а м и ч е с к и х жаропрочных сплаврв, несмотря на их низкую прочность и -пластичность, значительно хуже, чем о бычных конструкционных металлов, вследствие высокой температуры резания и более высокой их истирающей способности. Средством, улучшающим обрабатываемость этих материалов, является пропитка маслом.  [c.369]

Специфика процесса электрохимической размерной обработки определяет особенности качества обработанной поверхности. Формирование микрорельефа поверхности при ЭХО в отличие от резания в значительной мере определяется при этом химическим составом и структурой обрабатываемого материала, химическим составом, температурой и скоростью движения электролита. Силовой и тепловой факторы практически не участвуют в образовании поверхностного слоя (при отсутствии коротких замыканий, гидравлических ударов и других нарушений процесса ЭХО). Поверхностный слой создается в результате электрохимического растворения материала и химического воздействия среды. Шероховатость обработанной поверхности, являющаяся наиболее важной геометрической характеристикой циклической прочности, в зависимости от условий ЭХО изменяется в широком диапазоне от Кг == 10- 40 мкм до Яг. = 0,02- 0,16 мкм (ГОСТ 2789—73),. Для большинства конструкционных материалов при ЭХО в опти-малъном режиме получить шероховатость в пределах Яа = 0,32 4-2,5 мкм не представляет технологических трудностей [210]. Таким образом, шероховатость поверхности ЭХО не только не уступает основным чистовым методам механической обработки, но и некоторые из них превосходит.  [c.66]

Получила развитие и теория обрабатываемости металлов и сплавов. Наряду с разработкой новых ускоренных методов определения обрабатываемости были получены ценные сведения о влиянии химических, механических, теплофизических и структурных свойств материалов на допускаемую скорость и силы резания. Последнее позволило вооружить металлообрабатывающую промышленность научно обоснованными нормативами по выбору оптимальных геометрических парамегров инструментов и режимов резания к к для традиционных, так и новых конструкционных материалов.  [c.9]

Магниевые сплавы весьма технологичны — их можно отливать всеми способами литья (в песчаную форму, кокиль, под давлением, жидкой штамповкой, под низким давлением, непрерывным и цолунепрерывным способом). Малое теплосодержание этих сплавов позволяет повысить производительность и уменьшить износ инструмента при литье под давлением па сравнению с алюминиевыми сплавами. Детали из магниевых сплавов отлично шлифуются, полируются, подвергаются химическому фрезерованию (травлению), свариваются, а по легкости обработки резанием они превосходят все остальные конструкционные материалы. Если обрабатываемость магниевых сплавов принять за 100 единиц, то для других материалов получим следующие цифры 55 для алюминия, 45 для латуни, 30 для железа и 20 для стали [35].  [c.8]


Смотреть страницы где упоминается термин Обрабатываемость конструкционных материалов резанием : [c.2]    [c.104]    [c.15]    [c.80]    [c.98]    [c.252]   
Смотреть главы в:

Технология конструкционных материалов  -> Обрабатываемость конструкционных материалов резанием

Материаловедение и технология металлов  -> Обрабатываемость конструкционных материалов резанием



ПОИСК



Материал конструкционный

Материалы резанием

Обрабатываемость конструкционных материалов

Обрабатываемость материалов

Обрабатываемость материалов резанием



© 2025 Mash-xxl.info Реклама на сайте