Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Армированные волокнами материалы

В большинстве армированных волокнами материалов, изучаемых в настоящее время, по крайней мере один из компонентов хрупкий. Несмотря на то что волокна всегда прочнее матрицы, их удлинение при разрушении может быть и больше, и меньше предельного удлинения матрицы. Поэтому можно выделить различные типы процесса разрушения в зависимости от относительной пластичности компонентов.  [c.442]

Армированные волокнами материалы на основе полимерных или металлических матриц используются в производстве самых разнообразных изделий. Армированные пластики существенно отличаются по своим свойствам от материалов на основе металлической матрицы. Свойства материалов, армированных волокнами, сильно зависят от методов их получения и переработки. Поэтому условия получения материалов и изделий должны быть известны специалистам, занимающимся созданием и применением армированных материалов. В данной главе рассмотрены вопросы получения и переработки углепластиков. Свойства изделий из углепластиков определяются типом используемого углеродного волокна, типом полимерной матрицы и методом получения материала. Поэтому в каждом конкретном случае необходимо выбирать наиболее подходящие условия производства изделий из. углепластиков. После их изготовления иногда бывает Необходимо проводить дополнительную обработку (сверление отверстий, внешнюю отделку и т.д.). Для изготовления углепластиков требуются не только высококачественные исходные материалы, но и эффективные методы их получения и переработки.  [c.51]


Композиционные материалы также могут быть подразделены на несколько групп в зависимости от вида применяемой арматуры и связующего. В качестве арматуры для изготовления пространственно-армированных материалов широко применяют обычные и высокомодульные стекловолокна. Для этих же целей используют высокомодульные углеродные волокна, причем преимущественно для изготовления материалов 2—4-й групп, применяемых для создания несущих нагрузку тепловых экранов летательных, космических и глубоководных аппаратов [90, ПО, 122]. Для создания указанных групп пространственно-армированных композиционных материалов могут быть использованы и другие виды высокомодульных волокон, что обусловливается назначением и условиями их работы ]15, 97, 116, 124, 125].  [c.12]

К композициям относятся материалы, армированные волокнами или частицами, керамики, конгломераты и т. д.  [c.148]

Одним из основных параметров, влияющих на прочность композиционных материалов, армированных волокнами, является прочность связи между волокнами и матрицей. Особенно важно обеспечить надежную связь в композициях, упрочненных дискретными волокнами, поскольку от нее зависит эффективность передачи напряжения от матрицы к армирующим элементам.  [c.159]

Данная глава включает шесть разделов, два приложения и список литературы. Основные сведения о распространении механических возмущений приведены в приложении А. Некоторые результаты, относящиеся к динамике линейно упругих тел, обсуждаются в приложении Б. В разд. II дается обзор теории эффективных модулей для слоистых сред и сред, армированных волокнами. Несколько более подробно рассматривается слоистая среда, состоящая из чередующихся слоев двух изотропных однородных материалов здесь находятся выражения для эффективных модулей через упругие постоянные материала и толщины слоев. Построенная теория используется для нахождения постоянных фазовых скоростей продольных и поперечных волн в направлении, параллельном слоям. После этого исследуются пределы применимости теории эффективных модулей для изучения волн в слоистой среде. Соответствующие ограничения устанавливаются сравнением частот и фазовых скоростей с точными значениями, найденными в разд. III.  [c.358]

Наиболее важными частными случаями анизотропии в целом для армированных волокнами композитов представляются случаи ортотропии, квадратной симметрии и трансверсальной изотропии. В ортотропном упругом теле существует три взаимно перпендикулярные плоскости упругой симметрии. В качестве примера таких материалов можно привести композит,  [c.359]


Применяя результаты, полученные на моделях, к композитам, армированным волокнами бора, следует отметить, что коэффициент концентрации напряжений, определенный на моделях, без существенных изменений переносится на моделируемый композит. Чтобы получить значение концентрации деформаций в этом композите, следует принять в расчет зависимость модуля композита от отношения модулей материалов волокна и матрицы. Для моделируемого композита это отношение равно 100, тогда как для модели оно составляет 55.  [c.515]

В разделе IV обсуждалось использование низкотемпературных материалов. В настоящее время исследуются экспериментальные композиции, которые обеспечат улучшение эксплуатационных качеств применительно ко всем секциям двигателя. К ним относятся титан, армированный борными волокнами никель, армированный волокнами карбида кремния различные суперсплавы, армированные проволоками из тугоплавких металлических сплавов. Последний тип композиций открывает возможности для замены в будущем существующих сплавов для лопаток турбин более легкими материалами с повышенной выносливостью при температурах свыше 1100° С.  [c.75]

Конструкции, где рационально используют драпировочные возможности композиционных материалов, также часто экономически эффективны. Там, где требуются двойные контуры, конструкции, армированные волокнами, часто оказываются выгодными, несмотря на то, что цена их достигает 660 доллар/кг. Затраты па изготовление зависят также от числа деталей. Так, если композиции требуют меньших затрат на предварительную обработку, они могут оказаться более конкурентоспособными при малых сроках службы. Если они обеспечивают экономию времени при монтаже и изготовлении, они оказываются конкурентоспособными при больших сроках службы.  [c.107]

Был проведен ряд проработок возможных путей использования композиций в других носителях. Хотя эти конкретные проработки могут не найти применения, они показывают преимущества конструкций из композиционных материалов, армированных волокнами, в типичных ракетах.  [c.124]

Рассуждения, приведенные выше для композиционных материалов, армированных волокнами, справедливы также в большей  [c.265]

Недостаточная жесткость. Несмотря на армирование волокнами листовых материалов, их суммарная жесткость, определяемая модулем упругости, относительно низка по сравнению с другими конструкционными материалами, такими, как сталь и алюминий. Жесткость композиционных материалов близка по величине к жесткости бетона и древесины в направлении вдоль волокон. Для более эффективного использования композиционных материалов необходимо воспользоваться их формуемостью и изготовлять из них конструкции, жесткость и прочность которых обеспечивается их формой.  [c.268]

Значительные усилия направляются на разработку армированных волокнами металлических композитов, в которых металлическая матрица усиливается высокомодульными волокнами. Одна из главных целей разработки таких композитов состоит в использовании их в качестве конструкционных материалов для элементов конструкций, которые должны выдерживать высокие напряжения при повышенных температурах. Для подобного класса композитов кажется логически оправданным выбор вольфрамовых волокон благодаря их высокой прочности на растяжение как при комнатной, так и при повышенной температурах и благодаря их устойчивости при высоких температурах. Боль-  [c.275]

Предварительные исследования по совместимости показали, что между волокном и матрицей в тугоплавких армированных волокнами жаропрочных сплавах возникают реакции легирования [50]. Также показано, что если реакции легирования возникают между матрицей и волокном, то свойства композита улучшаются. В результате был осуществлен ряд исследований для подбора пар материалов волокно — матрица, наиболее совместимых друг с другом. В [51] исследованы свойства длительной прочности при повышенных температурах (1093 и 1204 °С) для четырех проволок Т7М (молибден, 0,5% Т1, 0,08% 2г, 0,015% С) ЗВ (вольфрам, 3% рения) КР (вольфрам, 1% тория) и 21808 (промышленный вольфрам). Обнаружено, что проволоки 21808 и ЗВ были более совместимы с исследованными никелевыми сплавами, чем проволоки NF или Т2М. Овойства длительной прочности проволок в отсутствие материала матрицы были такие- же.  [c.277]

Рассмотрено последовательное развитие методов и моделей для анализа разрушения армированных волокнами материалов методами микромеханики. В основе предложенного инженерного решения проблемы лежит учет неоднородности композита, поскольку замена композита однородным анизотропным материалом не соответствует сущности происходящих явлений усталости и разрушения. В то же время не рассматривались такие тонкости явления, как механика ми-кроразрушения. В результате оказалось возможным сформулировать упрощенную модель, объединяющую реальные свойства материала с разумными инженерными допущениями. -  [c.100]


Прогресс в создании материалов с очень высокими служебными свойствами (например, работоспособностью изделий при температурах выше 5000 °С) связан с порошковыми высокотемпературными материалами, среди которых принято выделять тугоплавкие металлы, твердые тугоплавкие соединения, керамикометаллические (керметы), упрочненные дисперсными включениями и армированные волокнами материалы.  [c.150]

Из приведенного примера следует, что при армировании материалов волокнами нельзя ограничиваться только рассмотрением их вклада в повышение прочности какого-либо слоя. Прочность материалов, армированных волокнами, оказывается высокой только при нагружении вдоль, волокон или под небольшим углом к направлению их ориентащ1и. В других же направлениях прочность армированного материала весьма низка (см., например, рис. 5,10). Если использовать такой материал для изготовления изделий, находящихся в сложном напряженном состоянии, то даже небольшие нагрузки могут привести к разрушению материала, когда они приложены вдоль направления, в котором прочность материала мала. В этом случае прочность армирующих волокон не используется в достаточной степени. При армировании волокнами материалов эффект упрочнения наблюдается только в том случае, когда направление главных напряжений совпадает с направлением ориентации волокон при нагружении в других направлениях проявляется не эффект упрочнения, а скорее эффект ослабления материала волокнами.  [c.201]

Армированные волокном материалы могут применяться также и без устройств для защиты от ударов молнии, если в самой конструкции летательного аппарата предусмотрены соответствющие меры. В принципе армированные пластмассы менее восприимчивы к притяжению молний, чем металлы. Их можно использовать в конструкции для электроизоляции более чувствительных компонентов. В зависимости от технологии изготовления и конструкции защитного устройства любой из описанных выше способов может оказаться оптимальным с учетом снижения массы и затрат. Анализ опубликованных материалов, ссылки на которые приведены выше, дает достаточно полное представление о применяемых технологиях. Один показатель, который был обязательным во всех проведенных исследованиях, связанных с нанесением защитных покрытий, — это минимально допустимая толщина таких покрытий, которая должна быть s> 0,127 мм.  [c.286]

Металлические композиционные материалы включают два основных класса дисперсноупрочненные материалы (рис. 463,6) и металлы, армированные волокнами (рис. 463, а).  [c.635]

Наибольшее внимание привлекают алюминиевые сплавы, армированные волокнами из бора, углерода, нержавеющей стали и бериллия титановые сплавы, армированные волокнами молибдена и бериллия, и никелевые сплавы, армированные волокнами вольфрама, молибдена и их сплавов. Данные о прочности некоторых волокон и армированных материалов приведены в табл. 156 и 157. Такие материалы наиболее перспективны для деталей, работающих в условиях, близких к одноосному растяжению, например лопаток турбин я компрессоров. Максимальные рабочие температуры этих материалов близки к температуре плавления матрицы. На рис. 465 в качестве примера показаны температурные зависимости прочности для алюминия, армированного стеклянными и кварцевыми волокнами. Для сравнения на графике приведены свойства дисперсноупроч ненного алюминия и алюминиевого сплава. На рис. 466 показана макро- и микроструктура прутка из сплава нихром, армированного волокнами вольфрама (50%).  [c.640]

Для промышленного применения металлов, армированных волокнами, необходимо преодолеть значительные трудности, связанные с разработкой технологии их получения, а также соответствующих методов конструирования н расчета деталей. Однако с учетом высокого уровня прочности (особенно удельной) и возможности достижения требуемого комплекса свойств путем выбора материалов матрицы и волокон, изменения объемной доли волокон, их ориеггтиропки и т. д. широкое применение таки.х материалов в ближаСинсм бу-д Н1ем не вызывает сомнений.  [c.640]

В качестве арматуры пространственно-армированных композиционных, материалов используют как стекловолокно, жесткость которого сравнительно невелика, так н высокомодульные углеродные волокна. Наибольшее распространение углеродные волокна получили при создании трехмерноар-мированных материалов типа углерод-углерод [90, 91, 110, 111, 116, 123, 124, 125]. В настоящее время уже испытываются многомерные схемы армирования. Созданы и анализируются системы, имеющие пять и более направлений армирования. При равномерном расположении армирующих волокон по диагоналям куба (система четырех нитей) удается получить ква-зиизотропный материал, а изменяя соотношение арматуры в разных направлениях, можно создать материалы с заданными свойствами.  [c.10]

Сравнение схем армирования с прямыми и криволинейными волокнами, согласно таблице, показывает, что повышение значения объемного коэффициента армирования у материалов с искривленными волокнами позволяет управлять упругими свойствами пространственно-армированного композиционного материала во всех направлениях. Такое управление в случае пространственного армирования одними прямолинейными волокнами ограничивается резким снижением общего объема арматуры в материале, соотвш-ствующим понижением его упругих констант н предела сопротивления при нагружении.  [c.24]

Расчетные значения упругих характеристик однонаправленных композиционных материалов, армированных волокнами эллиптического и квадратного сечений, при различной ориентации геометрических осей симметрии сечений волокон и изменении их относительного сближения отличаются на 50—200 % в зависимости от формы сечения [98, 121], Замена квадратного сечения волокна круглым при неизменности остальных параметров почти не влияет на значения упругих констант.  [c.144]


Композиционные материалы, образованные системой трех нитей, создают, как правило, большой толщины (до 500 мм). Технология создания таких материалов имеет специфические особенности, обусловленные процессами пропитки и формования. Оба процесса проводятся под вакуумом и давлением в закрытых пресс-формах и зависят от плотности ткани и типа связующего. Поэтому выбор типа связующего для создания рассматриваемого класса материалов требует детального изучения. О важности этого фактора свидетельствуют данные экспериментов, полученные на двух различных в технологическом отношении типах матриц — эпоксидной ЭДТ-10 и феноло-формальдегидной (ФН). В качестве арматуры при изготовлении трехмерноармированных композиционных материалов были использованы кремнеземные и кварцевые волокна. Структурные схемы армирования исследованных материалов были одинаковыми. Они представляли собой взаимно ортогональное расположение волокон в трех направлениях. Содержание и распределение волокон по направлениям армирования этих материалов приведено в табл. 5.13.  [c.156]

Хашин 3., Розен Б. В. Упругие модули материалов, армированных волокнами. — Труды американского общества инженеров-механиков. Серия Е, Прикладная механика/Пер. с англ. 1969, № 2, с. 223—232.  [c.221]

Следует также обобщить и расширить сведения о свойствах слоистых систем, армированных волокнами из различных материалов,— так называемых гибриЗяма композиционных материалов. По мере того как материаловеды разрабатывают новые материалы с улучшенными свойствами, которые могут или уже применяются в комбинации с существующими (например, высокопрочные стальные и углеродные волокна, комбинации стекловолокон и углеродных волокон и т. д.),- постоянно возникают новые проблемы микро- и макромеханики, которые должны эффективно решаться для того, чтобы эти материалы нашли применение и заняли свое место в ряду композиционных материалов.  [c.106]

Другой основной подход ж построению теории пластин из слоистых композиционных материалов, армированных волокнами, основан на представлении пластины как системы чередующихся относительно жестких (со свойствами, определяемыми волокнами) и податливых (со свойствами, аналогичными свойствам связующего) слоев. Такой подход был развит в работах Болотина [35], Сана и др. [157 ], Сана [155 ], Ахенбаха и Зербе [4 ], Райана [125 ], а также Сана и Ченга [156 ]). В какой-то степени он напоминает подход, используемый при описании многослойных пластин с легким заполнителем. Существенным отличием обсуждаемых здесь теорий является то, что они в конечном итоге предусматривают замену системы слоев некоторой условной макрооднородной средой, обладающей микроструктурными свойствами исходной системы.  [c.194]

Изучение механического поведения композиционных материалов включает аналитические исследования на двух уровнях абстрагирования. В общепринятой терминологии области этих исследований носят названия микромеханики и макромеханики. В микромеханике делается попытка распознать тонкие детали струк1уры материала, т. е. рассмотреть в действительности неоднородное тело, состоящее из включений — волокон, частиц или кристаллов — н матрицы, в которой размещены эти включения. Хотя термин композит объединяет широкое многообразие материалов, таких, как бетон, полукристаллические полимеры, бумага, кожа, кость и т. д., здесь будут обсуждаться главным образом материалы, армированные волокнами. Следует разъяснить, что термин микромеханика обычно не подразумевает исследований на атомном уровне или использования тензоров напряжений высших порядков, подобных фигурирующим в теориях моментных напряжений или теориях градиентов деформаций, хотя имеются и работы такого типа (см., например, Садовский и др. [16], а также Кох [8]).  [c.14]

Для того чтобы получить другую модель, положим, что все пуассоновские точки вместе с их окрестностями принадлежат одному материалу. Можно считать, что этот материал заполняет круг радиуса го с центром в каждой точке, а остальная часть плоскости состоит из другого материала. Если <С 1р, где Zj, = [У/Л ]>/з — среднее расстояние между пуассоновскими точками, то мы имеем случай малой концентрации кругов в матрице. Однако при Го 0(1р) в описанной выше модели мнотие круги перекрываются и модель не годится для описания материала с круговыми включениями. Чтобы получить модель такого материала, следует ввести правило, согласно которому круги, соответствующие соседним пуассоновским точкам, в случае необходимости смещаются так, чтобы они не перекрывались. Это, разумеется, относится к построению модели материала, армированного волокнами с круговыми поперечными сечениями. Форма включений не обязательно должна быть круговой она может быть произвольной. Всю процедуру и в этом случае можно выполнить на ЭВМ, построив таким образом случайное поле е (х).  [c.259]

Итак, три основные гипотезы, упомянутые выше, состоят в следующем во-первых, волокна распределены непрерывно-, во-вторых, волокна являются нерастяжимыми в третьих, композит в целом несжимаем. Малхерн и др. [22] использовали эти же гипотезы в своей теории, предназначенной для описания армированных волокнами пластических материалов. Все математические модели, основанные на этих трех предположениях, мы называем идеальными волокнистыми композитами независимо от того, является ли их поведение упругим, пластическим, вязкоупругим или каким-либо еще. Пипкин и Роджерс [26] показали, что многие особенности механического поведения подобных материалов не зависят от вида связи напряжений с деформациями. В настоящем обзоре мы сосредоточиваем наше внимание именно на таких общих характерных чертах.  [c.289]

В теории изотропных материалов с кинематическими ограничениями, предложенной Адкинсом и Ривлином [5] (см. также Адкинс [2—4], Грин и Адкинс [15]), энергия деформации выбирается в форме, которую она имеет для изотропных упругих материалов, а не для материалов с трансверсальной изотропией. Для изотропного материала W не зависит от /з, следовательно, в выражении для S следует положить = 0. Как отметил Спенсер [40], это предположение приемлемо, по-видимому, лишь тогда, когда материал армирован волокнами, далеко отстоящими друг от друга. Аналогичное предположение было использовано Прагером [28] при иследовании упругопластического поведения.  [c.348]

Для деформаций видов (2) и (4) материалы могут быть армированы волокнами, параллельными образующим коаксиальных цилиндров, являющихся главными поверхностями. В случае (3) волокна могут быть или параллельными, или перпендикулярными главным поверхностям, в начальном состоянии представляющим собой параллельные плоскости. Деформации вида (5) остаются контролируемыми для материалов, армированных волокнами, в начальном состоянии параллельными оси вращательной симметрии. Применение этого вида деформаций для получения решений в случае волокнистых и слоистых композитов несколько более подробно рассмотрено в статье Пипкина [23].  [c.351]

Основные концепции континуальных теорий смесей основательно изучены в рамках современных теорий механики сплошных сред. В теориях смесей предполагается наличие двух или более сред в каждой точке пространства, поэтому общие законы сохранения для смесей сформулировать нетрудно, но практическое их применение к композиционным материалам сталкивается с определенными затруднениями, связанными с трудностями задания законов взаимодействия компонентов на основе информации об их взаимном расположении и физических характеристиках. Для слоистой среды теория смеси, в которой параметры взаимодействия компонентов были определены на основании решений некоторых простейших квазистатических задач, предложена в работе Бедфорда и Стерна [12]. Новизна теории Бедфорда и Стерна состоит в том, что допускаются различные движения компонентов смеси, причем связь между этими движениями определяется моделью взаимодействия компонентов в реальном композите. В работе Бедфорда и Стерна [13] развита общая термомеханическая теория, основанная на этой модели, а также выведена система уравнений, применимых к определенному классу армированных волокнами композитов (см. Мартин и др. [45]).  [c.380]


Борные волокна с покрытием из нитрида бора оказались весьма стабильными в контакте с расплавленным алюминием. Кэй-мехорт [8] показал, что до тех пор, пока сохраняется целостность этого покрытия, борное волокно остается неповрежденным в расплаве алюминия при 1073 К. На основании этих данных был разработан способ изготовления композитов А —В путем пропитки волокон расплавленным металлом. Форест и Кристиан [11] исследовали сдвиговую и поперечную прочности композита, состоящего из борных волокон с нитридным покрытием н матрицы из алюминиевого оплава 6061. Материал был изготовлен диффузионной сваркой. Прочность этого композита на сдвиг оказалась меньше, а поперечная прочность — существенно меньше, чем материалов, армированных волокнами бора и борсика. Такие низкие значения прочности, возможно, обусловлены слабой связью между нитридом бора и алюминием, хотя в работе отсутствуют данные о характере разрушения, которые могли бы подтвердить это предположение. Связь между алюминием и борным волокном с покрытием из карбида кремния в меньшей степени зависит от способа изготовления материала. По заключению авторов цитируемой работы, наиболее удачное сочетание механических свойств имеет композит алюминиевый сплав бОбГ —непокрытое борное волокно, закаленный с 800 К с последующим старением.  [c.128]

ЭПОКСИДНОЙ матрицы, 755 К и выше в случае металлической матрицы), чтобы получить слоистый композит, армированный волокнами. Такие композиты, наряду с паиравлениями и плоскостями высокой прочности, обычно имеют слабые плоскости и направления, а композиты с такими свойствами могут отличаться в эксплуатации от гомогенных изотропных материалов.  [c.279]

Был сконструирован ряд систем с использованием компози-ционпых материалов, для которых производственные затраты (материалы и изготовление) были ниже, чем в варианте с металлоконструкциями. Особенно это относится к случаям, когда применение волокнистых композиций позволяет сократить число деталей и инструментов или использовать более простые инструменты, упростить конструкцию или процедуру сборки, уменьшить время контроля. В этих случаях облицовочные панели на сотовой основе, армированные волокнами, зачастую оказываются способными конкурировать со сложной алюминиевой конструкцией из оболочек и стрингеров.  [c.107]


Смотреть страницы где упоминается термин Армированные волокнами материалы : [c.178]    [c.180]    [c.48]    [c.145]    [c.59]    [c.10]    [c.295]    [c.22]    [c.193]    [c.181]    [c.270]    [c.231]   
Смотреть главы в:

Производство порошковых изделий  -> Армированные волокнами материалы



ПОИСК



Анизотропия стеклопластиков и других материалов, армированных волокнами

Армирование

Армирование волокнами

Армирование волокнами (прутками) фасонных отливок с целью их упрочнеАрмирование композиционными материалами

Влияние многонаправленности волокон на деформируемость пространственно-армированных композиционных материалов

Волокна

Волокна для армирования композиционных материалов

Классификация композиционных материалов, армированных волокнами

Композиционные материалы, армированные вискеризованными волокнами

Материал, армированный семействами нерастяжимых ниАрмирование малорастяжимыми волокнами

Материалы армированные волокнами, однонаправленные

Материалы волокнами

Общие представления о композиционных материалах и материалах, армированных углеродными волокнами

Особенности композиционных материалов, армированных углеродными волокнами

Получение и переработка материалов, армированных углеродными волокнами

Получение композиционных материалов на металлической основе, армированных волокнами



© 2025 Mash-xxl.info Реклама на сайте