Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы композиционные, армированные

Композиционные материалы представляют сочетание металлической основы (матрицы) и упрочняющего наполнителя — высокопрочных волокон (бора, вольфрама, молибдена и др.), пропитанных расплавленными металлами (кобальтом, алю.минием и т. д.). Варьируя компоненты и их объемное сочетание, получают материалы с высокими механическими характеристиками, жаропрочностью и другими свойствами. Композиционные армированные материалы по прочности и износостойкости значительно превосходят стали и высококачественные сплавы.  [c.40]


Модельные материалы. Схемы армирования композиционных материалов, структуры которых образованы системой двух нитей, более разнообразны, чем схемы других классов рассматриваемых материалов. Естественно, что экспериментальные исследования механических свойств материалов, со всеми вариантами схем армирования невозможны, и в этом нет необходимости. Для проверки теоретических зависимостей, описывающих упругие характеристики этого класса материалов, достаточно исследовать материалы с наиболее типичными схемами армирования. При этом важно оценить возможность использования теоретических зависимостей в широком диапазоне изменения свойств армирующих волокон и структурных параметров — степени искривления волокон основы (угла наклона к оси 1),  [c.98]

Появление армированных полимеров объясняется в основном человеческой любознательностью и постоянным поиском материалов, обладающих более высокими физико-механическими и химическими свойствами. Достаточно только внимательно посмотреть на растительные и животные вещества, имеющиеся на земле, чтобы увидеть, что это армированные материалы композиционные материалы уже давно используются самой природой. Кость, волосы, ногти на пальцах являются примерами тех же самых материалов.  [c.309]

К группе изотропных композиционных материалов относят материалы, для армирования которых используют наполнитель в виде рубленых коротких волокон, соизмеримых с диаметром, сплошных и полых сфер и микросфер, порошков и других мелкодисперсных компонентов. В таких материалах армирующий наполнитель хаотически перемешан со связующей матрицей. Напряженно-деформированное состояние такого материала аналогично однородному изотропному материалу. В зависимости от назначения изделия в качестве наполнителя изотропных композиционных материалов используют синтетические, минеральные и металлические компоненты. В качестве связующей матрицы применяют термореактивные полимеры и термопластичные (эпоксидные, полиэфирные, полиамидные, полистирольные, поливинилхлоридные, фенольные и другие смолы и их комбинации), а также металлы, обладающие высокими адгезионными свойствами к наполнителю.  [c.5]

Волокнистые композиционные материалы. На рис. 196 приведены схемы армирования волокнистых композиционных материалов. Композиционные материалы с волокнистым наполнителем (упрочнителем) по механизму армирующего действия делят на дискретные, в которых отношение длины волокна к диаметру Ijd 10-ь10 , и с непрерывным волокном, в которых Ijd = со. Дискретные волокна располагаются в матрице хаотично. Диаметр волокон от долей до сотен. микрометров. Чем больше отношение длины к диаметру волокна, тем выше степень упрочнения.  [c.423]


Одним из первых композиционных армированных материалов была медь, упрочненная вольфрамовыми и молибденовыми волокнами. Такая медь, изготавливаемая в основном методом инфильтрации, наряду с повышенной кратковременной и длительной прочностью обладает повышенным сопротивлением усталостному разрушению при комнатной температуре. Уменьшение диаметра волокон вызывает повышение прочности композиции в целом. В последние годы все более широко применяют технологию динамического горячего прессования при 950 - 1000 °С и диффузионной сварки в течение 2 ч при 550 - 800 °С и давлении 45 МПа. Известна композиция медь - волокна бора, получаемая горячим прессованием.  [c.184]

Терминология. Термин волокнистые композиционные материалы означает, что для упрочнения материала используются волокна. Поэтому их называют также композиционными материалами,, армированными волокнами. Свойства различных типов армирующих волокон перечислены в табл. 1.2. Как видно из таблицы все армирующие волокна обладаю высокой прочностью диаметр волокон обычно составляет 5 100 мкм. Сами волокна не используются для изготовления конструкций, изделий и т. д. Лишь соединяя их между собой с помощью полимерной, металлической или другой матрицы, можно получать композиционные материалы и изготавливать из них листы, трубы и другие изделия. Эти материалы и представляют собой волокнистые композиционные материалы, или армированные материалы. Для получения армированных углерод-  [c.16]

По конструктивному признаку упрочнения (рис. 22) различают композиционные материалы с хаотическим упрочнением, одномерно-j двумерно- и пространственно армированные. Композиционные материалы, одномерно армированные непрерывными волокнами, называются волокнитами, а двумерно армированные тканями — текстолитами. При армировании возможны различные схемы укладки упрочнителя (волокон), которые приведены на рис. 23.  [c.71]

Композиционный материал представляет собой высокопрочный или высокомодульный материал, называемый армирующим компонентом, соединенный со вторым материалом, называемым матрицей, позволяющим осуществлять изготовление необходимой инженерной конструкции и передавать внешние нагрузки к несущему упрочняющему компоненту. Типичные примеры таких композиционных материалов бетон, армированный стальной проволокой пластмасса, упрочненная стекловолокном упрочненные нейлоном смолы и дерево. Дерево относится к естественным композиционным материалам, в которых лигнин упрочнен волокнами целлюлозы. Хорошими примерами композиционных структур  [c.13]

Материалы композиционные пластмассовые, армированные волокном. Определение модуля упругости при сдвиге в плоскости с применением метода кручения плиты  [c.106]

Дальнейшее развитие принципа местного качества привело к появлению нового класса материалов — комбинированных материалов (композиционных, плакированных, армированных и т. п.), которые получают все более широкое применение. Созданные в последние годы изделия из порошковых материалов и композиций различных материалов обладают следующими качествами тугоплавкостью, высокой жаропрочностью легкостью алюминия прочностью титана и упругостью стали высокими звукопоглощающими, демпфирующими свойствами не требуют смазки.  [c.38]

Производство проволоки осуш,ествляется из широкой гаммы сталей и сплавов углеродистых и высоколегированных сталей, сплавов на основе меди, никеля, титана и чистых металлов. Проволока находит широкое применение в различных изделиях техники практически всех отраслей промышленности (тросах, торсионах вертолетов, пружинах, струнах, стропах высокотемпературных парашютов и т. п.), а также в качестве сварочных материалов для автоматической и полуавтоматической сварки, материалов для армирования при производстве композиционных материалов и др. По объему производства из всех видов металлургических изделий проволока уступает лишь листовому прокату и трубам.  [c.334]

Большое разнообразие форм отливок не позволяет организовать специализированное производство фасонной арматуры непосредственно из волокон. Однако изготовление такой арматуры можно наладить из проволоки или прутков. При этом используют композиционные материалы. Технологичность армирования в этом случае резко повышается. Из прутков в тугоплавкой оболочке изготовляют арматуру для черных металлов.  [c.696]

Таблица 3.32. Механические свойства волокон, проволоки и нитевидных кристаллов для армирования композиционных высокопрочных и высокомодульных материалов [14, 15, 24] Таблица 3.32. Механические свойства волокон, проволоки и <a href="/info/37319">нитевидных кристаллов</a> для армирования композиционных высокопрочных и высокомодульных материалов [14, 15, 24]

К конструкторским направлениям относятся рационализация форм сечений проката, отливок и поковок создание предварительно напряженных и армированных конструкций назначение рациональных марок материалов и применение термических и химико-тер-мических методов обработки замена металлов неметаллическими и композиционными материалами.  [c.217]

ПРОСТРАНСТВЕННО-АРМИРОВАННЫЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ  [c.2]

Традиционной структурой композиционных материалов является слоистая, когда траектории армирования лежат в плоскостях слоев, связь между которыми осуществляется через прослойки связующего [20, 25, 37—39]. Однако все большее внимание к себе привлекают композиционные материалы с пространственным расположением арматуры объем работ в этом направлении непрерывно возрастает. Целесообразность пространственного расположения арматуры несомненна. Введение пространственного каркаса не только ликвидирует такой недостаток слоистых композиционных материалов как опасность расслоения вследствие слабого сопротивления сдвигу и поперечному отрыву, но н локализует в пределах нескольких пространственных ячеек распространение трещин. Этим резко повышается несу[цая способность материала в толстостенных конструкциях, особенно в зонах приложения сосредоточенных нагрузок, вырезов, ребер при нестационарных силовых и температурных воздействиях, характерных для современной техники.  [c.3]

Справочник обобщает опыт, накопленный при создании и исследовании пространственно-армированных композиционных материалов на основе полимерной матрицы. Главная цель книги — оценить конструкционные возможности существующих и перспективных схем пространственного армирования, знание которых должно способствовать более, широкому и рациональному применению этих перспективных материалов в ответственных конструкциях.  [c.3]

Слоистые материалы могут быть получены армированием пленками или нитями. При армировании пленками материалы обладают изотропией в плоскостях, касательных к поверхности этих пленок, т. е. трансверсальной изотропией. При армировании нитями появляется возможность создания композиционного материала с другими видами анизотропии.  [c.5]

Ортогонально-армированные композиционные материалы являются орто-тропными в осях, совпадающих с направлениями армирования. Число продольных и поперечных слоев в них может быть различным (1 1, 1 3, 1 5, 2 5 и т. д.). Материалы с укладкой 1 I являются равновесными (или равнопрочными).  [c.5]

Композиционные материалы, армированные высокомодульными волокнами [117, 125], обладают конструктивными преимуществами и относительно простой технологией их пере-  [c.7]

Способы создания. Известно несколько способов создания пространственно-армированных структур [19, 20, 22, 24, 25, 30, 55, 82, 91, 92, 101, 102, 107, 108, 125[. В зависимости от способа образования пространственных связей композиционные материалы можно разделить на четыре группы (рис. 1.1).  [c.10]

Ко второй группе относятся материалы, пространственные связи которых создаются за счет введения волокон третьего направления. Эти композиционные материалы образуются системой трех нитей в прямоугольной или цилиндрической системе координат. Волокна могут быть взаимно ортогональными в трех направлениях или располагаться под углом в одной из плоскостей армирования.  [c.10]

Композиционные материалы также могут быть подразделены на несколько групп в зависимости от вида применяемой арматуры и связующего. В качестве арматуры для изготовления пространственно-армированных материалов широко применяют обычные и высокомодульные стекловолокна. Для этих же целей используют высокомодульные углеродные волокна, причем преимущественно для изготовления материалов 2—4-й групп, применяемых для создания несущих нагрузку тепловых экранов летательных, космических и глубоководных аппаратов [90, ПО, 122]. Для создания указанных групп пространственно-армированных композиционных материалов могут быть использованы и другие виды высокомодульных волокон, что обусловливается назначением и условиями их работы ]15, 97, 116, 124, 125].  [c.12]

Новыми композиционными материалами являются армированные квазимонолитиые квазислоистые материалы, получаемые способом автовакуумной сварки давлением. Соответствующим подбором материалов для поверхностных и внутренних слоев можно значительно повысить коррозионную стойкость, стойкость против износа, воздействия ударных и вибрационных нагрузок при одновременном увеличении удельной конструктивной прочности.  [c.78]

Алюминиевые сплавы считаются наиболее перспективным матричным материалом для армирования углеродными волокнами. Разработке соответствующих композиций в настоящее время уделяется наибольшее внимание. Использование углеалюмипиевого композиционного материала будет, по-видимому, определяться его стоимостью, которая в течение ближайших десяти лет составит 45—110 долларов/кг. При такой стоимости углеалюминий сможет с успехом применяться в самолето- и ракетостроении, энергомашиностроении, двигателестроении и в космической технике. Из углеалюминия можно изготовлять детали крыла и обшивки самолетов, лоня ероны, опоры и лопасти вертолетных винтов использование углеалюминия в деталях оболочек ракет и для  [c.340]

Теперь можно приступить к исследованию эффекта анизотропии в перекрестно армированных оболочках. Рассмотрим задачу о растяжении защемленной цилиндрической оболочки (см. рис. 10.1), выполненой из четного числа перекрестно армированных слоев. Задачу реализуем для оболочки с геометрическими параметрами Л = 5 мм, I = R = 100 мм, изготовленной из бороэпоксидного композиционного материала. Исходным материалом однонаправленно армированного слоя являются борные волокна сЕ = 4,2 - 10 МПа, = 0,21 и эпоксидное связующее с = 3500 МПа, = 0,33 объемный коэффициент армирования = 0,5. Другие характеристики армированного слоя d , /р, Ло всякий раз при численных расчетах необходимо подбирать, исходя из равенства Ло = h/N, где Л - число слоев в пакете, и формулы (4.1).  [c.211]

Основным фактором, ограничивающим широкое использование композиционных древесных пластиков в машиностроении, является их низкая прочность при динамическом нагружении. Для увеличения динамической прочности применяют различные способы армирования пластиков высокопрочными материалами. Одним из эффективных направлений в технологии таких материалов является армирование древесных пластиков стекловолок — нистыми наполнителями [170, 171]. В качестве фактора, сдерживающего развитие исследований в данной области, необходимо отметить отсутствие методов теоретического описания прочностных свойств армированных композиционных древесных пластиков.  [c.219]


Одними из перспективных в настоящее время считаются волокнистые композиционные материалы (ВКМ), армированные волокнами из углеродных материалов. Армирование такими волокнами позволяет получать шсокопрочные и коррозионноустойчивые ВКМ.  [c.143]

Основными объектами для контроля теневым способом являются пластины и оболочки, доступные с обеих сторон, у которых несплошности имеют плоскую форму и располагаются параллельно поверхностям, например листы с расслоениями. Теневой способ используется также для контроля композиционных материалов, например слоистых материалов (ламинатов), армированных стекловолокном, сотовых структур, используемых  [c.291]

Внутри каждой in3 перечисленных груип композиционные материалы можно классифицировать различными способами по виду материала компонентов, их размерам, форме, ориентировке, а также по назначению или методу получения. Например, волокнистые материалы по виду матрицы делят на металлические, полимерные и керамические по виду волокон —на материалы, армированные проволокой, стеклянными, борными, углеродными, керамическими и другими волокнами или нитевидными кристаллами по размерам волокон — на материалы с непрерывными или короткими (дискретными) волокнами по ориентировке волокон — на материалы с однонаправленными или ориентированными в двух и более направлениях волокнами.  [c.635]

Металлические композиционные материалы включают два основных класса дисперсноупрочненные материалы (рис. 463,6) и металлы, армированные волокнами (рис. 463, а).  [c.635]

Изложены методы расчета упругих свойств композиционных материалов с пространственными схемами армирования. Приведены упругие, теплофизическне и прочностные характеристики пространствен но-армированных композиционных материалов с разной структурой армирования. Рассмотрено влияние структурных и технологических параметров, объемного содержания и свойств арматуры и матрицы на характеристики композиционных материалов.  [c.2]

Наличие арматуры с различными жесткостью и прочностью значительно расншряет диапазон свойств композиционных материалов с пространственной схемой армирования. Главные трудности — технологические, возникающие при создании сложных схем армирования, моделирующих структуру некоторых природных элементов, например, кристаллов, растений или биологических тканей [82, 112]. К настоящему времени накоплен значительный опыт создания и совершенствования технологии разных типов композиционных материалов с пространственными схемами армирования.  [c.3]

В справочнике изложены три основных технологических принципа получения пространственных связей, когда объемное армирование достигается в рамках традиционной схемы двух нитей за счет искривления волокон одного из направлений системы трех нитей и вискеризацни волокон оценены возможности и перспективы многомерного армирования. Особое внимание уделено новому перспективному классу композиционных материалов углерод-углерод.  [c.3]

Раанирение сферы использования пространственно-армированных материалов. вызывает необходимость доведения до промышленности надежных численных оценок физических и прочностных свойств этих материалов. Книга содержит обширный экспериментальный материал. Главное внимание уделено межслойному сдвигу и поперечному отрыву. Улучшение показателей по этим характеристикам и по вязкости разрушения подтверждено экспериментами, что позволяет говорить о возможности раси1ирения областей применения пространственно-армированных композиционных материалов.  [c.3]

Свойства композиционных материалов формируются не только арматурой (ее свойствами), но и в большей степени ее укладкой. Варьируя угол укладки арматуры (слоя), можно получить заданную степень анизотропии свойств, а изменяя порядок укладки слоев и угол укладки их по толщине, можно эффективно управлять нзгиб-ными и крутильными жесткостями композиционного материала. Для достижения этой цели, а также для установления типа анизотропии материала, а следовательно, и числа определяемых характеристик, систему координат слоя обозначают индексами 1, 2, 3, а композиционного материала х, у, г. Угол укладки слоев в плоскости ху обозначают ос. Все это способствует выявлению наиболее общих закономерностей создания композиционных материалов, которые обусловлены главным требованием 1 классификации с точки зрения механики материалов — установления закона деформирования и зависимости свойств от угловой координаты. Поэтому подробную классификацию целесообразно проводить на основе конструктивных принципов. Исходя из них, все структуры можно разделить на две группы — слоистр, е и пространственно-армированные.  [c.4]

Высокие жесткость и прочность армирующих волокон, составляющие основу прочности и жесткости композиционных материалов, реализуются лишь в случае их определенного расположения по отношению к действующему полю напряжений (действующей нагрузке). Вследствие большого разнообразия нагрузок применяются различные схемы укладки арматуры. Варьируя направлением укладки слоев, можно получить слоистые материалы с различной ориентацией армирующих волокон, обладающие в плоскости укладки изотропными и анизотропными свойствами. Именно в возможности придания материалу оптимальной для каждого частного случая анизотропии заключается главное преимущество волокнистых композиционных материалов [44]. В зависимости от ориентации армирующих волокон в плоскости укладки слоистые структуры можно подразделить на следующие основные группы однонаправленные, ортогонально-армированные с переменным углом укладки волокон по толщине, перекрестно-армированные и хаотически-армированные.  [c.5]

Однонаправленные материалы получают при укладке всех волокон параллельно друг другу. Их называют материалами с укладкой 1 О, указывая этим на отсутствие поперечно уложенных волокон. Если волокна в таком материале расположены равномерно, он является трансверсальноизотропным (или монотропным) в плоскостях, перпендикулярных к направлению армирования. В ряде случаев влияние технологии изготовления материалов с укладкой 1 О обусловливает в них четко выраженную слоистость, что приводит к ортотропии композиционного материала.  [c.5]

Перекрестная укладка одинакового числа слоев в двух направлениях образует композиционные материалы с ортотропией в осях, направленных вдоль биссектрис угла между волокнами в соседних слоях. Материалы с переменным углом укладки по толщине одинакового числа слоев в направлениях О, 60 и 120° условно называют материалами звездной укладки (1 1 I). Они являются изотропными в плоскостях, параллельных плоскостям укладки слоев. Трансверсальноизотропными являются и многонаправленные материалы, в которых одинаковое число слоев укладывается в направлениях, я/ц, 2я/л,. .., л, п 3), а также хаотически армированные в одной плоскости короткими волокнами. При использовании в качестве арматуры обычных однослойных тканей получаются композиционные материалы со слоистой структурой (тек-столиты). Возможны различные комбинации структур ткань может быть уложена так, что направления основы во всех слоях совпадают или между направлениями смежных слоев образуется некоторый заданный угол. Кроме того, угол укладки и число слоев по толщине материала могут изменяться. В зависимости от этого можно выделить три основных вида слоистых структур симметричные, антисимметричные и несимметричные. К первому виду относятся материалы, обладающие симметрией физических и геометрических свойств относительно их срединной плоскости, ко второму виду — материалы, обладающие симметрией распределения одинаковых толщин слоев, но угол укладки волокон (слоя) меняется на противоположный на равных расстояниях от срединной плоскости. К несимметричным структурам относятся материалы, не обладающие указанными выше свойствами.  [c.5]

Особенности структурных свойств композиционных материалов на основе углеродных и борных волокон с традиционными схемами армирования исследованы в работах [20, 25, 33, 59, 70]. Анализ и сопоставление полученных данных по угле- и боро-пластикам с аналогичными данными типичных стеклопластиков [39, 71] свидетельствуют о том, что использование высокомодульных волокон при традиционных схемах армирования способствует лишь резкому увеличению жесткости материала в направлениях армирования при этом заметного возрастания других упругих и прочностных характеристик не происходит. Главной отличительной особенностью высокомодульных композиционных материалов является большая по сравнению со стеклопластиками анизотропия упругих свойств [25]. Для углепластиков увеличение анизотропии упругих свойств обусловлено также анизотропией самих армирующих волокон. Существенных различий по прочностной анизотропии между стеклопластиками и высокомодульными материалами нет, но абсолютные значения межслойной сдвиговой прочности и прочности на отрыв в трансверсальном направлении однонаправленных и ортогонально-армированных углепластиков в 1,5—3 раза ниже аналогичных характеристик стеклопластиков.  [c.7]


Наличие волокон с высокой жесткостью позволяет варьировать в самом широком диапазоне зависимость уд ль-ной прочности композиционных материалов от их удельной жесткости. Это обусловливает существенные преимущества композиционных материалов перед металлами, где удельная жесткость примерно постоянная при некотором изменении удельной прочности [15]. Управление удельной жесткостью и прочностью, а также другими физико-механическими характеристиками в плоскости армирования осуществляется нзд1енением укладки волокон или одноосных тканей различного плетения как в плоскости, так и по толщине пластины или изделия [2, 14]. При этом характеристики композиционных материалов перпендикулярно плоскости армирования практически не изменяются [25]. Варьирование укладки волокон приводит не только к изменению степени анизотропии свойств, при незначительном изменении сопротивления межслойному сдвигу и поперечному отрыву [20, 69]. Наличие переменной укладки по толщине приводит к существенному увеличению неоднородности структуры композиционного материала, что необходимо учитывать при расчете конструкций из таких материалов [2, 104]. Выбор закона укладки в плоскости и по толщине пакета подчиняется назначению конструкции. Таким образом, использование высокомодуль-пых волокон при традиционных схемах армирования, когда толщина изделия создается набором плоских армирующих элементов — ирепрегов или слоев ткани, не устраняет указанных выше отрицательных особенностей композиционных материалов.  [c.8]

Опыт применения пространственно-армированных материалов в целях тепловой защиты значительно расширил область их использования используются не только теплозащитные, но и прочностные свойства материалов. Появилась новая область применения материалов, образованных системой ех нитей, — в супермаховиках. Применение современных композиционных материалов в супермаховиках представляет значительный интерес, так как максимальная удельная энергия, которая может быть накоплена в маховике, пропорциональна отношению прочности материала к плотности. Маховики, изготовленные намоткой из однонаправленных материалов, наряду с высокой прочностью в направлении армирования обладают традиционными  [c.9]

В качестве арматуры пространственно-армированных композиционных, материалов используют как стекловолокно, жесткость которого сравнительно невелика, так н высокомодульные углеродные волокна. Наибольшее распространение углеродные волокна получили при создании трехмерноар-мированных материалов типа углерод-углерод [90, 91, 110, 111, 116, 123, 124, 125]. В настоящее время уже испытываются многомерные схемы армирования. Созданы и анализируются системы, имеющие пять и более направлений армирования. При равномерном расположении армирующих волокон по диагоналям куба (система четырех нитей) удается получить ква-зиизотропный материал, а изменяя соотношение арматуры в разных направлениях, можно создать материалы с заданными свойствами.  [c.10]


Смотреть страницы где упоминается термин Материалы композиционные, армированные : [c.4]    [c.159]    [c.405]    [c.279]    [c.416]    [c.9]    [c.2]   
Углеродные волокна (1987) -- [ c.0 ]



ПОИСК



Армирование

Армирование волокнами (прутками) фасонных отливок с целью их упрочнеАрмирование композиционными материалами

Армирование объемное фасонных отливок композиционными материалами

Армированные композиционные материалы на основе алюминия и его сплавов

Влияние многонаправленности волокон на деформируемость пространственно-армированных композиционных материалов

Волокна для армирования композиционных материалов

Классификация композиционных материалов, армированных волокнами

Композиционные материалы

Композиционные материалы армированные дисперсноунрочненные

Композиционные материалы армированные слоистые

Композиционные материалы с алюминиевой матрицей, армированные стальной проволокой и другими материалами

Композиционные материалы, армированные вискеризованными волокнами

Композиционные материалы, армированные системой двух нитей

Композиционные материалы, армированные системой трех нитей

Общие представления о композиционных материалах и материалах, армированных углеродными волокнами

Особенности композиционных материалов, армированных углеродными волокнами

Получение композиционных материалов на металлической основе, армированных волокнами

СТАТИСТИЧЕСКОЕ ОПИСАНИЕ ФИЗИКОМЕХАНИЧЕСКИХ СВОЙСТВ КОМПОЗИТОВ С АРМИРОВАНИЕМ ПО КОМБИНИРОВАННЫМ СХЕМАМ Статистическая модель структур трехкомпо — нентных композиционных материалов

Технолошя изготовления функционально-несущих элементов штанговых конструкций из армированных полимерных композиционных материалов



© 2025 Mash-xxl.info Реклама на сайте