Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловая схема и конструктивные особенности

Тепловая схема и конструктивные особенности  [c.82]

Конструктивные особенности атомных энергетических установок, их тепловые схемы и термодинамические циклы определяются типом атомного реактора, применяемым топливом и теплоносителем, а также системой изоляции помещения с повышенным уровнем радиации. В качестве атомного топлива обычно используются уран и плутоний, теплоносителем могут служить вода, газы (гелий, азот, углекислый  [c.323]


Особенностью таких однородных групп узлов, с одной стороны, является взаимозаменяемость в процессе их проектной оптимизации, а также возможность изменения их количества, направленности процессов по участкам схемы теплообмена, последовательности расположения элементов и других компоновочных преобразований без существенного изменения общей конфигурации термодинамического цикла. Это создает возможности взаимосвязанных перестановок элементов и сравнительно свободного перемещения в пределах их однородной группы. С другой стороны, любые компоновочные преобразования отличаются дискретным либо комбинаторным характером изменения признаков вида тепловой схемы и типов конструкций. Это, а также сложность и трудоемкость теплотехнических расчетов служат причиной неразработанности методов решения задач оптимизации конструктивно-компоновочных параметров и характеристик оборудования и технологической схемы теплоэнергетических установок.  [c.40]

В настоящее время применяется несколько отличающихся одна от другой схем или систем автоматизации мартеновских печей. Выбор определенной системы автоматики зависит от теплотехнических и конструктивных особенностей мартеновской печи, в частности от рода топлива, теплового режима печи, перекидных устройств и т. д.  [c.217]

Состав средств обеспечения объектных подсистем САПР зависит от класса проектируемых объектов. В качестве примеров таких подсистем можно назвать подсистемы конструирования объектов, их деталей и сборочных единиц, поиска оптимальных проектных решений, анализа энергетических или информационных процессов в объектах, определения допусков на параметры и вероятностного анализа рабочих показателей объектов с учетом технологических и эксплуатационных факторов, технологической подготовки производства. Любая из перечисленных подсистем не даст возможности проектировщику получить рациональные проектные решения, если не будут учитываться особенности математического и графического описания именно данного класса объектов, не будет обобщен опыт их проектирования, не будут предусмотрены перспективные технологические приемы. Вместе с тем весьма желательна всемерная универсальность объектных подсистем в отношении большого класса однотипных объектов. Например, для всего класса ЭМУ могут быть созданы на единой методической основе объектные подсистемы для анализа электромеханических и тепловых процессов, не говоря уже о конструировании деталей или механических расчетах. Именно универсальность объектных подсистем позволяет свести к минимуму дублирование дорогостоящих работ по их созданию и открывает путь к формированию все более широких по назначению отраслевых САПР. Объектные подсистемы могут находить применение как на определенном этапе проектирования, так и на нескольких его этапах, при этом решается ряд типовых задач с соответствующей адаптацией к требованиям каждого этапа. Примерами могут служить подсистема определения допусков на параметры и вероятностного анализа, применяемая на соответствующем этапе, и подсистема поиска оптимальных проектных рещений, которая может служить как для определения рационального типа и конструктивной схемы объекта, так и для параметрической оптимизации.  [c.22]


При длительной эксплуатации турбины обслуживающему персоналу обычно известны места постоянно появляющихся подсосов, а также узлы, в которых может появиться неплотность. Эти узлы и места зависят от тепловой схемы блока, от конструктивных особен-  [c.42]

Общие показатели экономичности. Помимо сравнения расхода топлива на моторный и остановочно-пусковой режимы необходимо учитывать такие важные преимущества моторного режима, как сокращение времени на подготовку агрегата после остановки, создание вакуума и набор нагрузки, готовность агрегата к подхвату нагрузки в аварийных ситуациях, повышение долговечности оборудования из-за снижения в нем напряжений, возникающих при остановке и пуске, а также улучшение работы электросети. Экономический эффект от всех этих факторов меняется в широких пределах в зависимости от параметров пара, конструктивных особенностей турбины, тепловой схемы ПТУ и особенностей энергосистемы.  [c.93]

Математическая модель блока АЭС с водоохлаждаемым реактором для возможности исследования двух указанных типов АЭС должна содержать описание оборудования, присущего обоим типам АЭС с учетом специфических ограничений на структуру тепловой схемы (связанных с различными требованиями к качеству воды), ограничений на параметры рабочего тела и конструктивные характеристики оборудования. Полная математическая модель блока АЭС, реализованная в виде единого неделимого алгоритма, при большом числе элементов и оптимизируемых параметров, при ограничениях на термодинамические и конструктивные параметры была бы излишне громоздкой и неудобной для исследований и оптимизации. Вместе с тем можно выделить в технологической схеме АЭС рассматриваемых типов несколько частей, взаимосвязи между которыми или слабы, или немногочисленны. Это дает возможность без ущерба для полноты и точности исследований разделить математическую модель теплосиловой части АЭС на несколько отдельных подмоделей, исследования по которым могут быть проведены с гораздо меньшей затратой времени, так как в каждой из подмоделей число исследуемых (и оптимизируемых) параметров резко сокращается по сравнению с полной моделью. Исследование таких частей АЭС, особенно для параметров, являющихся внутренними для данной части (скорость воды в трубах теплообменника, диаметр труб и т. д.), может быть выполнено более подробно. Кроме того, исследования отдельных частей АЭС могут иметь и самостоятельное значение.  [c.79]

К другой группе относятся экспериментальные поправки Атц и АЯо, объединяющие в себе целый ряд трудно рассчитываемых первичных поправок на неоднородность температурных датчиков, тепловое сопротивление прилегающих к слою участков ядра и блока (в схемах с термопарами), на паразитные тепловые мостики в слое и сквозное излучение через исследуемое вещество. Точная аналитическая оценка такого рода факторов практически невозможна, поэтому для учета их приходится предусматривать серию градуировочных опытов. Конкретные приемы градуировки зависят от схемы и назначения калориметра. На выбор их, в частности, влияют диапазон рабочих температур и давлений, природа и структурное состояние исследуемых веществ, особенности используемых температурных датчиков и требуемая точность измерений. Перечисленные факторы чаще всего оказываются взаимосвязанными. Так, от диапазона рабочих температур во многом зависят выбор и метрологические возможности температурных датчиков. В свою очередь, на форму замкнутого слоя и общее конструктивное оформление калориметра существенно влияют рабочие давления и структурное состояние исследуемых веществ.  [c.131]

Для понимания конструктивных особенностей и особенностей тепловых процессов в каналах подогревателей типа ПМР на рис. 10.2 приведена схема движения теплоносителей, характерные температуры и основные размеры.  [c.383]

По всем четырем электростанциям дано подробное описание тепловых и электрических схем, схем водоподготовки и технического водоснабжения, компоновочных решений главных корпусов и генеральных планов, а также конструктивных особенностей отдельных элементов оборудования и сооружений.  [c.3]


Пуск паровой турбины осуществляется согласно инструкции по эксплуатации, разработанной заво-дом-изготовителем или наладочной организацией. Режим пуска турбины зависит от типа турбоагрегата, его мощности, начальных параметров,, конструктивных особенностей, особенностей тепловой схемы станции, а также местных условий. С ростом единичной мощности и переходом на пар высоких и сверхкритических параметров процессы пуска и эксплуатации паровых турбин существенно усложнились. Определенными особенностями отличается пуск блочных установок, при котором блок котел — турбина — генератор пускается как единый агрегат.  [c.29]

В некоторых случаях бывает выгодно применять двухступенчатый перегрев (рис. 1.34, в) сначала паром из отбора, а затем свежим, причем оптимальное повышение энтальпий пара приблизительно одинаково в каждой ступени. Часто допускают отступление от такой разбивки ступеней перегрева для удобства организации отбора пара. Выбор того или иного способа сепарации, а также параметров, при которых она осуществляется, зависит от принципиальной тепловой схемы турбоустановки, ее характеристик, конструктивных особенностей и проводится на основании технико-экономических расчетов.  [c.36]

Детерминированное математическое описание физической модели массообменных процессов в зоне технологического процесса получается упрощенным и несовершенным, прежде всего из-за трудности достоверно сформулировать граничные условия, а также выбрать и принять параметры процесса в уравнениях математического описания. Параметры делятся на характеризующие свойства материалов (теплоемкость, плотность и др.) и характеризующие явления переноса энергии и массы (теплопроводность, кинематическая вязкость и др.). Параметры первой группы, входящие в уравнения сохранения массы и энергии, обычно принимаются усредненными значениями для условий технологического процесса. Выбор параметров второй группы (констант переноса) требует особого внимания, поскольку тепловая работа печей, как отмечалось, обычно лимитируется процессами переноса. Однако до настоящего времени слабо изучены теплофизические свойства исходных материалов, особенно расплавов, что тормозит развитие теории печей. Создание общей теории позволит полностью исключить эмпирический подход в расчетах и конструировании печей (производительность, расход топлива и пр.). Анализ типовых тепловых режимов определяет оптимальные условия тепловой работы (тепло-массообмен, генерация тепла, движение газов, циркуляция расплавов и пр.) как существующих, так и проектируемых печей. В настоящее время разработаны обобщенные методы металлургических расчетов и методики составления математических моделей ряда процессов и технологических схем для ЭВМ [53]. Физико-химические закономерности в агрегатах и процессах автогенных способов плавки изучаются при помощи физического моделирования (особенно в совокупности с математическим моделированием), укрупненно-лабораторных исследований и полупромышленных испытаний [54]. Накопленный опыт позволяет оценить важность и необходимость исследований на малых установках, которые дают возможность, с одной стороны, еще до строительства промышленного агрегата решить вопросы технологического, теплотехнического и конструктивного характера, а с другой стороны, определить, какие результаты исследований можно перенести на крупный агрегат, а какие вопросы требуют уточнения или разрешения в опытно-промышленных условиях. Такую работу позволяют в широких масштабах проводить лаборатории, оснащенные современным  [c.80]

От схемы движения сред в прямой зависимости находится и теплообмен между ними, поэтому схемы движения жидкости еще называются схемами теплообмена. Несмотря на особенности конструктивного исполнения и способа действия различных типов теплообменных аппаратов, тепловой расчет их имеет общие принципы.  [c.331]

Высокопроизводительный брызгальный бассейн для тепловых, а особенно для атомных станций может эффективно работать лишь тогда, когда его проект научно обоснован, что требует выполнения комплексных исследований, в состав которых входят натурные наблюдения на действующих брызгальных бассейнах и наблюдения за состоянием пограничного слоя атмосферы. Для получения надежных данных, обосновывающих новые конструктивные решения охладителя, прежде всего необходимы методика экспериментальных исследований и расчетный метод, с помощью которых можно было бы оценить уровень охлаждения различных по производительности, конфигурации, схемам компоновок разбрызгивающих устройств брызгальных бассейнов, прогнозировать их охлаждающую способность и проектировать бассейн с заданными характеристиками.  [c.29]

Отличительной особенностью этих установок является размещение терморегулятора во внутренней полости тонкостенного трубчатого образца. Такая схема терморегулирования при ee рациональном конструктивном выполнении обеспечивает возможность надежного крепления на наружной поверхности образца средств термо- и тензометрии, сравнительную безопасность проведения опытов при высоком давлении, минимальный объем рабочей среды в образце, отсутствие перегрева или переохлаждения обслуживающих приборов, а также высокую экономичность благодаря малому расходу хладоагента при охлаждении и незначительным тепловым потерям при нагреве. Кроме того, при такой схеме система создания внутреннего давления и система охлаждения (нагрева) образца изолированы друг от друга.  [c.266]


Монарным ПГУ посвящена монография В. А. Зысина [35], в которой содержится термодинамический анализ различных вариантов циклов на смеси пара и газа, тепловых схем и конструктивных особенностей монарных ПГУ. Автором монографии предложен  [c.54]

Объем необходимого контроля в каждой конкретной котельной определяется конструктивными особенностями котлов, особенностями общей тепловой схемы и принятым способом водоподготовки. Примерный объем химического контроля за энергетическими установками трех типов приведен в табл. 12-1. Кроме анализов воды и пара, в практике эксплуатации энергоустановок возникает нередко необходимость выполнения анализа различного рода осадков для установления причин их образования. Такие определения так же, как и полный анализ воды, непосредственно в промышленных котельных обычно не выполняются. Эти работы осуществляются центральной заводской лабораторией предприятия или для этой цели используются водные лаборатории специальных институтов, организаций и химических служб энергосистем МЭиЭ.  [c.275]

Схема простейшей термоэлектрической установки показана на рис. 3.1. Установка ТЭГ состоит из батареи ТЭЭЛ, устройства для получения и подвода тепла к горячим спаям при температуре Т , устройства для отвода тепла от холодных спаев при температуре полезной нагрузки R и других (вспомогательных) узлов установки. Обш,ий к. п. д. такой установки (если принять за к. п. д. установки отношение количества отданной потребителю электроэнергии кобш,ему количеству тепловой энергии топлива) определяется не только к. п. д. ТЭЭЛ, но и конструктивными особенностями установки ТЭГ, которые зависят от следуюш,их факторов мош,ности ТЭГ источника тепла (твердое, газообразное или жидкое топливо, ядерное горючее, солнечная энергия и др.) способа подвода и отвода тепла (теплопроводность, конвекция, лучеиспускание) теплоносителя (вода, газы, жидкие металлы) характеристик отдаваемого потребителю электрического тока (постоянный, переменный, низкое, высокое напряжение) и др. Тогда обш,ий к. п. д. установки с ТЭГ может быть представлен в виде  [c.39]

Технологические схемы теплоэнергетических установок с оптимальными свойствами могут быть синтезированы путем последовательного применения методов нелинейного программирования для множества технологических графов, отображающих различные структурные состояния технологической схемы теплоэнергетической установки. Эта наиболее общая задача оптимизации теплоэнергетической установки должна решаться с учетом как иерархической взаимосвязи между подзадачами оптимизации параметров узлов, элементов, агрегатов и установки в целом, так и алгоритмических особенностей оптимизации непрерывно и дискретно изменяющихся параметров. Соответственно в методике решения задачи синтеза оптимальных схем теплоэнергетических установок должны быть итерационно взаимосвязаны алгоритм нелинейного математического программирования, принятый для оптимизации непрерывно изменяющихся термодинамических и расходных параметров установки алгоритм дискретного нелинейного программирования, с помощью которого осуществляется оптимизация дискретно изменяющихся конструктивно-ком-поновочных параметров элементов, узлов и агрегатов установки алгоритм оптимизации вида тепловой (технологической) схемы установки с учетом технических и структурных ограничений. Конструктивные приемы решения этой очень сложной задачи находятся в стадии разработки.  [c.11]

Неравномерность тепловосприятия связана с неравномерным распределением передаваемого тепла между отдельными поверхностями нагрева, трубными элементами и трубами. Она обусловлена химическими, физико-химическими и физическими явлениями, происходящими яри сжигании топлива и передаче тепла от горящего факела и газового потока к поверхностям нагрева, их конструктивными особенностями (комио новка, размеры, расположение, гидравлическая схема), условиями эксплуатации котельного агрегата (нагрузка, вид сжигаемого топлива, правильность теплового режима, шлакование, занос золой и т. п.).  [c.78]

На рис. 8.8 и 8.9 приведены варианты схем ПГУ с двухконтурным КУ, а на рис. 8.10 соответствуюшая Q, Г-диаграмма теплообмена. В тепловых схемах имеются некоторые различия. Экономайзер контура ВД выполняют одно- или двухступенчатым в зависимости от конструктивных особенностей котла. Для питания водой контуров НД и ВД предусмотрены два самостоятельных питательных насоса. В некоторых ПГУ устанавливают один насос с отбором воды НД из его промежуточной ступени. В тепловую схему КУ может быть  [c.276]

На первый взгляд двигатели Стирлинга могут показаться не заслуживающими особого внимания, поскольку они в большой степени напоминают другие тепловые двигатели возвратнопоступательного действия, хотя модификации Била и в особенности двигатели Флюидайн сильно отличаются от привычных конструкций. Едва ли поверхностный взгляд на двигатели имеет существенные преимущества перед разбором принципиальных схем. Поэтому для данного раздела были отобраны такие примеры двигателей Стирлинга из числа реально существующих образцов, в которых можно было бы наглядно выделить важнейшие элементы конструкции и там, где это возможно, показать общность элементов, имеющих различные конструктивные воплощения. Эти примеры даются как в виде фотографий, так и в форме принципиальных конструктивных схем. Практическая реализация основных принципов, изложенных в предыдущих разделах, осуществляется различными путями и видоизменяется в зависимости от методов реализации заданно-  [c.50]

Теплоспловое оборудование современных котельных и ТЭЦ рассчитано на обязательную работу с перечисленными выще элементами комплексной автоматизации. Сложность тепловых процессов, многообразие технологических и конструктивных вариантов оборудовання, единичные мощности агрегатов и всей систел1ы теплоснабжения в целом не позволяют однозначно рещать вопросы комплексной автоматизации. Наряду с этим построение схем теплоснабжающих установок и конструирование отдельных агрегатов требуют правильного подхода для успешного использования технических средств комплексной автоматизации и соответствующего анализа рабочих режимов, особенно в переходных процессах, когда переход системы от состояния равновесия к новому состоянию достигается за счет взаимодействия средств регулирования и самого объекта — агрегата или системы теплоснабл<ения.  [c.239]

Говоря о теплоотдаче через стенку, нельзя не отметить и особенностей реальной конструкции, которые не учтены в рассматриваемой одномерной схеме теплообмена. Если вернуться к описанным ранее конструктивным вариантам создания охлаждающих трактов (рис. 3.12), то можно заметить, что отвод теила от нагретой стенки в жидкость происходит и через соединительные ребра, которые, следовательно, играют роль не только силовых связей между внутренней и внешней стенками, но являются также теплопередающими элементами с развитой поверхностью. Это улучшает передачу тепла в охлаждаюп ую жидкость, но вместе с тем приводит к некоторому местному тепловому сопротивлению и соответственно к небольшому местному увеличению температуры Гг. ст.  [c.192]

После прекращения процесса горения заряда появляется опасность повторного несанкционированного его воспламенения. Эту опасность вызывает лучистый тепловой поток, испускаемый разогретыми элементами конструкции, в которых в процессе работы двигателя аккумулируется льшое количество теплоты. Необходимость охлаждения и величина требуемого для исключения повторного самовоспламенения заряда охладителя зависят от конструктивных особенностей ЭУ (расположение нагретых элементов конструкции относительно поверхности заряда при его гашении) и теплофизических свойств топлива и материалов конструкции. Так, например, использование в качестве ТЗП материалов сублимирующего класса с температурой возгонки Тю, сравнимой с температурой самовоспламенения заряда, исключает возможность повторного воспламенения заряда. Таким образом, процесс гашения з яда во многих случаях должен включать не только гашение газового объема, но и охлаждение конструкции, т.е. отбор тепла от твердого тела, теплоемкость и теплопроводность которого неизмеримо больше, чем у газа. Типичная схема РДТТ с узлом гидрогашения (УГГ) представлена на рис. 3.9.  [c.178]


Имеются следующие технические средства для снижения относительных удлинений выбор оптимальных схем проточной части в каждом цилиндре и взаимного расположения цилиндров применение двухкорпусных цилиндров устройство в цилиндрах камер отбора так, чтобы улучшить процесс прогрева и сблизить тепловое состояние корпуса и ротора подвод пара оптимальной температуры в различные отсеки уплотнений оптимизация соотношения масс корпуса и ротора целесообразное расположение неподвижных точек корпусов и упорных подшипников уменьшение оттока теплоты от корпусов наружу в зоне их опор увеличение жесткости ЦНД и многие другие. Некоторые из указанных средств связаны с глубоко принципиальными вопросами выбора кинематических схем турбинных ступеней, другие — с принципами конструирования деталей турбин, которые были рассмотрены в п. П1.4—III.7. При этом ряд конструктивных решений, как, например, двухкорпусные цилиндры, экраны, опоры цилиндров, конструкции лабиринтовых уплотнений и думмисов и др. должны разрабатываться с учетом особенностей быстрого пуска  [c.52]


Смотреть страницы где упоминается термин Тепловая схема и конструктивные особенности : [c.78]    [c.24]    [c.352]    [c.288]    [c.218]    [c.205]    [c.106]    [c.196]    [c.184]    [c.44]    [c.165]    [c.785]   
Смотреть главы в:

Парогазотурбинные установки  -> Тепловая схема и конструктивные особенности



ПОИСК



Конструктивные особенност

Конструктивные особенности

Конструктивные схемы

Схемы Особенности схем

Схемы и конструктивные особенности

Тепловая схема ТЭС



© 2025 Mash-xxl.info Реклама на сайте