Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы на основе бериллия

Сплавы на основе бериллия  [c.519]

Сплавы на основе бериллия изучены пока очень мало. Установлено, что при введении железа удлинение пластичного листового бериллия снижается. Никель вызывает меньшее снижение пластичности, а в присутствии меди значительно повышаются прочностные свойства бериллия без заметного снижения пластичности.  [c.459]

Особое место среди конструкционных композитов занимают материалы на основе титана и титановых сплавов, упрочняемые проволочными волокнами КЗ сплавов на основе бериллия, а также сплавов на основе вольфрама и молибдена. В ряде случаев титан и его сплавы могут быть армированы волокнами карбида кремния. Для материала титан — бериллий (V/ —  [c.121]


В IX группу материалов объединены тугоплавкие металлы и сплавы. Для этих металлов характерна исключительно высокая температура плавления, поэтому их применяют для изготовления деталей аппаратов, работающих при температуре до 2000— 2500° С. По обрабатываемости резанием их можно разделить на три группы. Наиболее труднообрабатываемые металлы — вольфрам, молибден. Сплавы на основе бериллия отличаются хрупкостью и токсичностью и способствуют абразивному изнашиванию инструмента. И, наконец, сплавы на основе тантала и ниобия обладают вполне удовлетворительной обрабатываемостью, позволяющей осуществлять их резание даже инструментом из быстрорежущих сталей при скорости до 30 м/мин.  [c.5]

Ряд ценных свойств имеют сплавы на основе бериллия Они обладают высокой прочностью, пластичностью, высоким модулем упругости, но используются крайне редко ввиду, с одной стороны, своей высокой стоимости, а с другой — сложностью их обработки. Бериллиевые сплавы очень токсичны и без применения особых мер предосторожности могут принести большой вред здоровью человека.  [c.13]

Пластическая деформация сталей и сплавов на основе железа и никеля на современных скоростных прокатных станах заканчивается при температурах ниже 800—950 °С, т. е. фактически происходит теплая пластическая деформация с характерными признаками множественного внутризеренного скольжения с подавлением рекристаллизационных процессов. В данном случае наблюдается повышенная пластичность, так как температурная зависимость пластичности характеризуется повышением пластичности задолго до температуры начала рекристаллизации. Это особенно заметно для металлов с г. п. у. решеткой (бериллий, магний) и объясняется облегчением сдвига по небазисным плоскостям. При этом двойникование подавляется облегченным скольжением.  [c.513]

Бериллий в основном применяется в сплавах на основе меди, никеля, алюминия и в меньшей степени — железа. Возможно применение бериллия как раскислителя для ряда металлов.  [c.519]

В сталях перлитного и аустенитного классов таким эффективно действующим поверхностноактивным легирующим элементом является бор, а в сплавах на основе меди и, в частности, в берилл иевой бронзе—магний [130].  [c.38]

В паяемых конструкциях применяют стали всех типов, чугуны, никелевые сплавы (жаропрочные, жаростойкие, кислотостойкие), медь и ее сплавы, а также легкие сплавы на основе титана, алюминия, магния и бериллия (табл. 47). Ограниченное применение имеют сплавы на основе тугоплавких металлов хрома, ниобия, молибдена, тантала и вольфрама.  [c.239]


Технически чистые металлы (99,9 % основного металла), как правило, характеризуются низкими прочностными свойствами, поэтому в машиностроении применяют главным образом их сплавы. Сплавы на основе железа в зависимости от содержания в них углерода называют сталями или чугунами на основе алюминия, магния, титана и бериллия, имеющих малую плотность, - легкими цветными сплавами на основе цинка, кадмия, олова, свинца, висмута и других металлов - легкоплавкими цветными сплавами на основе меди, свинца, олова и др. - тяжелыми цветными сплавами на основе молибдена, ниобия, циркония, вольфрама, ванадия и др. - тугоплавкими цветными сплавами.  [c.7]

Бронзы — сплавы на основе меди с небольшим содержанием олова, кремния, фосфора, бериллия, хрома, магния, кадмия и др. Плотность бронзы находится в пределах 8230...8900 кг/м , предел прочности при растяжении 520...1350 МПа, температура плавления 955... 1050 С. Удельное электрическое сопротивление бронзы при 20 "С составляет 0,095...0,1 мкОм м, удельная проводимость при 20 С 10,5...10 МСм/м.  [c.22]

Бериллий применяют как легирующий элемент при получении различных сплавов на основе меди, магния, никеля, алюминия, железа и других металлов. Около 90 % производимого бериллия используют в виде различных сплавов, преимущественно на медной основе или для повышения прочности, жаропрочности, жаростойкости и других характеристик материалов.  [c.143]

Четвертая группа (табл. 4) — сплавы на основе системы А1— Mg обладают повышенными механическими свойствами за счет легирования титаном, бериллием, цирконием сплавы этой группы выдерживают высокие статические и ударные нагрузки.  [c.168]

Бронзы — это сплавы на основе меди, в которых в качестве добавок используют олово, алюминий, бериллий, кремний, свинец, хром и другие элементы. Как и латуни, бронзы подразделяют на литейные и обрабатываемые давлением. В обозначении марок бронз принята та же система, что и у латуней, только в начале проставляют буквы Бр, означающие — бронза .  [c.236]

Применение бериллия как конструкционного материала в атомной технике вызвано его способностью слабо поглощать тепловые нейтроны. Кроме того, бериллий используют как источник а-излучения, а также как конструкционный материал при изготовлении рентгеновских трубок. Бериллий очень слабо поглощает рентгеновские лучи (в 17 раз хуже, чем алюминий). Бериллий успешно используют для легирования сплавов на основе меди (см. 10.4) и алюминия (см. 13.1).  [c.431]

Внутреннее окисление заключается в селективном окислении менее благородного компонента внутри сплава. Чаще всего это происходит на границах зерен. Указанное явление ведет к ухудшению прочностных характеристик сплава вследствие нарушенного сцепления зерен, придает сплаву хрупкость. Внутреннему окислению подвержены, в основном, сплавы на основе меди и серебра, легированные незначительными количествами алюминия, цинка, кадмия и бериллия. Этот вид коррозии встречается также у сплавов.железа, никеля и кобальта, в которых селективному окислению подвергаются добавки алюминия и хрома. Наиболее действенной предохранительной мерой против внутреннего окисления является увеличение концентрации легирующих добавок.  [c.71]

D) Неверно. По удельной прочности классифицируют конструкционные материалы. К тому же такие материалы как сплавы титана, бериллия и особенно композиты обладают более высокой удельной прочностью, чем сплавы на основе железа.  [c.18]

Сплавы на основе меди с добавками алюминия, марганца, кремния, бериллия и др., не содержащие олова, называются специальными бронзами. Эти сплавы  [c.237]

До последнего времени бериллий применялся в основном для легирования сплавов на основе меди, никеля, алюминия, в меньшей степени железа и особенно для производства бериллиевой бронзы. В чистом виде бериллий использовали лишь для изготовления окон рентгеновских трубок (поскольку он слабо поглощает рентгеновские лучи), в некоторых акустических приборах, в источниках нейтронов.  [c.459]

В настоящее время применяют конструкционные сплавы на основе железа, алюминия, магния, меди, титана, бериллия, никеля, ниобия, циркония, молибдена, цинка и некоторых других металлов.  [c.125]


Сварка бронз. Бронзы представляют собой сплавы на основе меди с различными элементами. Основными элементами являются олово, алюминий, марганец, бериллий, кремний, хром и т. д. Бронзы, так же, как и латуни, могут одновременно содержать несколько легирующих элементов. Бронзы применяют в виде различных отливок. Сварку бронзы используют главным образом при заварке дефектов литья, при изготовлении изделий сложных конфигураций из отдельных бронзовых отливок, ремонтной сварке.  [c.499]

Химический состав и механические свойства. Сплавы на основе системы А1 — Ве (табл. 6) представляют большой интерес, как конструкционный материал, так как уже при содержании бериллия более 15—20%, в значительной мере сочетают в себе весьма ценные свойства бериллия с высокой пластичностью алюминия, что делает их в технологическом отношении более удобными по сравнению с чистым бериллием.  [c.206]

Разнообразные диффузионные покрытия, полученные на никелевых сплавах и на тугоплавких металлах, рассмотрены в книге (143], где подчеркнуто, что для высокотемпературной защиты сплавов на основе никеля по-прежнему наиболее перспективными и эффективными остаются алюминидные покрытия, которые целесообразно легировать бором, кремнием, хромом, титаном, танталом, ниобием, бериллием, магнием и другими элементами.  [c.270]

Основой для разработки такого рода материалов, по мнению многих советских и зарубежных исследователей, должен являться алюминий [28, 29]. Известно [30], что коэффициент линейного расширения (к. л. р.) либо аддитивно складывается из коэффициентов линейного расширения фаз, входящих в состав сплава (в случае гетерогенных сплавов), либо имеет более низкие значения, чем вычисленные по правилу аддитивности (в случае неупорядоченных твердых растворов). В связи с этим для получения низких значений к. л. р. сплавов на основе алюминия последний необходимо легировать элементами, обладающими меньшим к. л. р., чем основа. К таким элементам относятся, например, никель, железо, хром, бериллий и кремний. Однако плотность никеля, железа и хрома достаточно высока, поэтому вводить их можно лишь в сравнительно небольших количествах, чтобы не утяжелять сплав. Бериллий имеет низкую плотность, но он дорог и, главное, токсичен, а поэтому может быть применен только в тех случаях, когда он дает особенно большой эффект. Наиболее целесообразная добавка — кремний. Он сравнительно легок, недефицитен, недорог, нетоксичен и отличается от других упомянутых выше элементов более низким к. л. р.  [c.296]

Электролиз водных растворов и расплавленных сред — второй по значению (после способа восстановления) способ можно получать порошки почти всех металлов получаемые порошки являются весьма чистыми благодаря очистке от примесей в процессе электролиза, однако стоимость получаемых порошков очень высока из-за низкой производительности и больших затрат электроэнергии получают порошки железа, никеля, меди, тантала, титана, тория, бериллия, серебра, хрома, марганца и различных сплавов на основе железа, никеля, меди.  [c.14]

Представителями группы медных сплавов, используемых для электродов при сварке нержавеющих и жаропрочных материалов, в нашей стране являются тройные сплавы на основе системы медь-никель—бериллий, а в иностранной практике медь — кобальт— бериллий.  [c.37]

Практическое использование подобного упрочнения текстурова-нием может представлять интерес при производстве баллонов из листов для поверхностей, которые должны быть стойкими против удара. Перспективными в этом плане являются сплавы на основе Титана, бериллия и др.  [c.296]

Се показано наличие предвыделений, предшествующих образованию соединений Мд31 и МдСе в твердых растворах сплавов на основе меди, легированных хромом и цирконием, обнаружены молекулярные комплексы Сг2 2г, а при легировании меди никелем и бериллием — молекулярные комплексы Ы1Ве.  [c.17]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]

При легировании бериллием некоторых тяжслых металлов, напрпмер медн или ннкеля, образуются сплавы, обладающие способностью к дисперсионному твердению (старению). Сплавы на основе меди или никеля, в которых бериллий образует фазы, способствующие дисперсионному твердению, характеризуются способностью растворять бериллий примерно от 0 ,1% при комнатной температуре более чем до 3% при повышенной температуре. После нагревания сплава до температуры, при которой бериллий более растворим, и последующего быстрого охлаждения такого сплава закалкой в воду до комнатной температуры часть бериллия, которая не растворяется прн комнатной температуре, образует пересыщенный твердый раствор. В таком состоянии сплав мягок и легко поддается обработке при комнатной температуре. Однако после повторного нагревания до относительно низкой температуры (ниже температуры красного каления) пересыщенный твердый раствор бериллия в сплаве распадается на кристаллы, которые, вероятно, представляют собой мельчайшие частицы очень твердых интерметаллических соединений бериллия. Эти частицы располагаются по границам зерен сплава и, таким образом, значительно повышают его твердость. Точно регулируя повторное нагревание, вызывающее эффект дисперсионного твердения, можно получать сплавы с широким диапазоном свойств — от высокопластичпых в самом мягком состоянии до сплавов с минимальной, возможно даже нулевой, пластичностью в самом твердом состоянии.  [c.66]


Применению ннобня как основы или легирующего элемента в сплавах цветных металлов уделялось и продолжает уделяться большое внимание. Изучение ряда двойных и тройных сплавов на основе ниобия с добавкой практически всех элементов периодической таблицы направлено на улучшение стойкости ниобия против окисления. Например, в работе [13.3] как компоненты двойных сплавов с ниобием исследовались следующие элементы бериллий, бор, хром, кобальт, железо, молибден, никель, кремний, тантал, титан, вольфрам, ванадий и цирконий. Наилучшая устойчивость против окисления при 1000° была получена для сплавов, содержащих около 9 вес. % хрома, 5 вес. % молибдена, 15,5 вес. % титана и 5,7 вес. % ванадия. Кинетика окисления изучалась для сплавов с хромом, молибденом, титаном, вольфрамом, ванадием и цирконием [80].  [c.463]

И длительной прочности при повышенных температурах и плохим сопротивлением развитию разрушающей трещины. Эти недостатки бериллиевых сплавов, очевидно, могут быть устранены при армировании их высокопрочными и высокомодульными углеродными волокнами. Из данных, представленных на рис. 44, следует, что из всех рассмотренных композиционных материалов и традиционных сплавов композиционный материал бериллий — углеродное волокно потенциально обладает наивысшими значениями удельной кратковременной прочности при температурах до 980° С. Значение этой характеристики для композиции на основе бериллия в 4,5 раза выше, чем для композиции нихром — углеродное волокнод и примерно в 30 раз выше, чем для таких традиционных жаропрочных сплавов, как МАР-М-200, Рене 41 и ТД-ни-кель. Расчетный удельный модуль упругости композиции бериллий — углеродное волокно составляет 15 000 км, т. е. в 10 раз выше, чем у жаропрочных сплавов. G учетом этих данных разра-  [c.412]

Beryllium-ni kel — Бериллия пикелид. Стареющие сплавы на основе никеля, содержащие до 2,75 % бериллия. Деформируемые сплавы никели-да бериллия используются прежде всего как меха-  [c.902]

По удельным прочности (см. табл. 13.1) и жесткости (рис. 14.14) бериллий превосходит высокопрочные стали и все сплавы на основе легких металлов (Mg, А1 и Ti), а по удельной жесткости — и металлы, обладающие более высоким модулем упругости (W и Мо). К тому же, высокий модуль упругости берйллия Е = 310 ГПа) мало изменяется. при увеличении температуры до 450 °С. Вот почему бериллий является одним из лучших материалов для деталей конструкций, где особо важны собственная масса конструкции, жёсткость ее силовых элементов. Расчеты показали, что самолет, изготовленный на 80 % из бериллия, будет в 2 раза  [c.429]

Выбор основного металла и припоя. В качестве основного металла применяют стали всех типов, никелевые сплавы (жаропрочные, жаростойкие, кислотостойкие), медь и ее сплавы, а также легкие сплавы на основе титана, алюминия, магния и берилли .  [c.51]

У бериллия очень высокие удельные прочность и жесткость. По этим характеристикам, особенно по удельной жесткости, Be значительно превосходит высокопрочные стали и сплавы на основе алюминия, магния, титана. Бериллий обладает большой скрытой теплотой плавления и очень высокой скрьггой теплотой испарения. Высокие тепловые и механические свойства позволяют использовать бериллий в качестве теплозащитных и конструкционных материалов космических летательных аппаратов (головные части ракет, тормозные устройства космических челноков, оболочки кабин космонавтов, камеры сгорания ракетных двигателей и т.д.). Высокая удельная жесткость в сочетании со стабильностью размеров, высокой теплопроводностью и др. свойствами дают возможность использовать бериллий при создании высокоточных приборов (детали инерциаль-ных систем навигации - гироскопов и др.).  [c.115]

Небольшие количества бериллия применяют для легирования специальных сплавов на основе меди, никеля, алюминия. Введение его в эти пластичные металлы сильно повышает их твердость и прочность. Так, прочность берил-лиевой бронзы ( u-f2—3 % Be) достигает 1800 МПа (как у высокопрочных сталей) и в то же время не дает искр при ударах. Сплавы на основе Си, Ni или А1 с Be имеют высокую коррозионную стойкость в сухом и влажном воздухе, немагнитны, обладают повышенной упругостью и прочностью и мало изменяют свои свойства при нагреве до 300—400 °С. Все это позволяет применять такие сплавы для деталей приборов и механизмов. Примесь 0,5—1,5 % Be предохраняет серебро от тускнения. Есть сведения, что добавка около 0,01 % Be в жидкий магний увеличивает жаростойкость расплава магния, устраняя опасность его вспышки, и позволяет поднимать температуру расплавленного магния от 680 до 800 X, что иногда необходимо.  [c.277]

Возможность коммутации ТЭЭЛ путем диспергирования расплавленного металла струей воздуха описана Л. М. Драбкиным и др [27]. Изучалась коммутация тройных сплавов на основе Sb, Те, Bi и Bi, Те, Se указанным способом, с нанесением трех слоев никеля (толщиною 20 мкм) меди (толщиною 1 1,5 мм) алюминия (толщиною 0,2 мм). Контактное сопротивление, измеренное на большом количестве образцов, было около 7 10" ом см" . После спекания в атмосфере водорода контактное сопротивление уменьшилось до 2 10" ом см при прочности сцепления 40—42 кПсм , Коммутация выдерживала без заметного изменения характеристик тепловые удары (при 280° С опускание в воду с температурой 20 С). Этот метод коммутации пригоден при любых размерах и любой форме поверхностей спаев. Для припайки контактируемых поверхностей к диэлектрикам рекомендуется металлизация диэлектриков. Указывается возможность металлизации окиси бериллия молибденом или никелем..  [c.97]

Такими полезными добавками в сплавах на основе железа являются (см. гл. II) бор, углерод и некоторые другие элементы. Так, введение 0,004 % бора в углеродистую сталь, содержащую 0,2 % (ат) позволило вдвое снизить концентрацию фосфора на границах аустенитных зерен [301]. Имеются данные [99, 124], свидетельствующие о том, что, например, углерод при определенных концент зациях действительно способен ликвидировать отпускную хрупкость в тройных сплавах Ре — Р — С (см. гл. I, II). Однако в случае легированных конструкционных сталей, уже содержащих 0,1-0,5 % С, дальнейшее повышение его концентрации не приводит к снижению склонности к отпускной хрупкости [6]. Попытки введения в сталь других полезных примесей (например, бора или бериллия) также не дали желаемого результата. Возможно, это обусловлено тем, что различньге добавки такого рода по адсорбционной активности на границах зерен и положительному влиянию на энергию межзеренного сцепления а-железа значительно уступают углероду — наиболее полезной примеси, уже присутствующей в сталях в концентрациях, достаточных для насыщения твердого раствора.  [c.192]

Сплавы на основе меди с добавками олова, алюминия, свинца, кремния или бериллия называют бронза.ми. Бронзы обладают хорошими механическими, антифрикционными, литейными свойствами, антикоррозионной стойкостью и хорошо обрабатываются резанием. Бронзы обозначают буквами и цифрами соответственно вxoдящи в них компонентам и их процентному содержанию.  [c.702]

Защите подлежат конструкционные стали и чугуны, никелевые, кобальтовые, хромовые и ванадиевые сплавы сплавы на основе тугрплавких металлов — молибдена, вольфрама, ниобия, тантала сплавы на основе активных металлов —титана, циркония сплавы на основе легких и цветных металлов — алюминия, меди, магния, бериллия, цинка углеграфитовые материалы, специальные борид-ныЪ сплавы и т. д. Вместе с тем часто ставится задача придать рабочим поверхностям материалов (металлам, стеклу, керамике, кремнию, германию и др.) специфические электрические, оптические и другие свойства.  [c.5]



Смотреть страницы где упоминается термин Сплавы на основе бериллия : [c.572]    [c.428]    [c.880]    [c.334]    [c.278]    [c.82]   
Смотреть главы в:

Справочник по машиностроительным материалам т.2  -> Сплавы на основе бериллия



ПОИСК



БЕРИЛЛИИ МЕДЬ И СПЛАВЫ НА ЕЕ ОСНОВЕ Медь

Берилл

Бериллий

Бериллий и сплавы

Сплавы на основе



© 2025 Mash-xxl.info Реклама на сайте