Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свободные колебания системы с конечным числом степеней свободы

СВОБОДНЫЕ КОЛЕБАНИЯ СИСТЕМЫ С КОНЕЧНЫМ ЧИСЛОМ СТЕПЕНЕЙ СВОБОДЫ  [c.140]

Дифференциальные уравнения свободных колебаний системы с конечным числом степеней свободы в главных координатах принимают простой вид  [c.178]

Как определяют 2. неизвестных постоянных при исследовании свободных колебаний системы с конечным числом степеней свободы  [c.178]

В фундаментальной работе Пуассона 1829 г. содержится, помимо указанного выше, немало других важных результатов из общих уравнений теории упругости вновь выведено уравнение для продольных колебаний тонких стержней, раньше полученное Навье (1824 г.), и для их поперечных (изгибных) колебаний, а также впервые дано уравнение для их крутильных колебаний. Там же решена задача о свободных радиальных колебаниях упругой сферы. Эти результаты стали отправными для многочисленных работ, сколько-ни-будь подробное освещение которых возможно лишь в специальном исследовании по истории теории упругости. Здесь достаточно сказать, что этими работами был подготовлен новый этап в развитии теории колебаний, обобщение основных положений, относящихся к линейным колебательным системам с конечным числом степеней свободы, на линейные колебательные системы с бесконечно большим числом степеней свободы. Один из общих результатов такого рода был установлен Стоксом в работе О динамической теории дифракции название которой напоминает о том, что в эту эпоху — эпоху торжества теории упругого светоносного эфира Юнга — Френеля оптика снова содействовала развитию теории колебаний, как и во времена Гюйгенса. Для свободных колебаний системы с конечным числом степеней свободы, вводя нормальные координаты , для изменения каждой из них, получают уравнение вида  [c.277]


Анализ свободных колебаний систем с конечным числом степеней свободы приводит, как известно, к приравниванию нулю частотного определителя, после развертывания которого образуется частотное уравнение, степень которого соответствует числу степеней свободы рассматриваемой системы. При большом числе степеней свободы развертывание определителя в общем (буквенном) виде связано с серьезными вычислительными трудностями. С другой стороны, известно [6], что характеристический полином системы, как и определитель графа, равен сумме величин деревьев графа  [c.59]

Общие замечания. Распространение теории свободных колебаний систем с конечным числом степеней свободы (см. гл. Ill) на распределенные системы осуществляется в рамках функционального анализа. Теория свободных колебаний упругих систем может рассматриваться как физическая интерпретация спектральной теории линейных самосопряженных операторов в гильбертовом пространстве. Операторные обозначения весьма удобны при изложении общих вопросов теории колебаний упругих систем, поскольку они придают предельную краткость и общность. Чтобы облегчить интерпретацию операторных обозначений, в табл. 1 и 2 дана их развернутая запись для некоторых классов упругих систем.  [c.166]

Способ Рэлея, изложенный в применении к системам с конечным числом степеней свободы, находит применение и для приближенного определения частоты основного тона свободных колебаний балки. Пусть у (z) —прогиб балки под действием нагруз-кп q z). Составим выражение  [c.201]

Дифференциальные уравнения свободных колебаний консервативной системы с конечным числом степеней свободы можно получить из следующих уравнений Лагранжа  [c.140]

Распределяя всю нагрузку фермы по ее узлам и имея в виду, что восстанавливающими силами в этом случае являются силы упругости, представляющие собой реакции сходящихся в этих узлах стержней, получаем расчетную схему для составления дифференциальных уравнений свободных колебаний фермы как системы с конечным числом степеней свободы. Для пространственной фермы число степеней свободы  [c.163]

Уравиеиия свободных колебаний. В большинстве практических случаев колебания исследуемой реальной механической системы близки к колебаниям некоторой идеализированной линейной системы с эквивалентным вязким трением. Исключение представляют специальные случаи, когда реальная конструкция содержит элементы с резко выраженными нелинейными свойствами. Их следует рассматривать отдельно. Целесообразен подход к реальной распределенной конструкции как к идеализированной системе, с конечным числом степеней свободы, имеющей определенные собственные характеристики, которыми с достаточной точностью определяют колебания исследуемой конструкции, поскольку практически исследуют ограниченное число собственных тонов. Таким образом, если принять характер демпфирования вязким (силы трения пропорциональны скорости), то предметом рассмотрения является линейная система с п степенями свободы, дифференциальное уравнение движения которой можно представить в следующем виде  [c.330]


Система с двумя случайными параметрическими воздействиями 307—309 Система с конечным числом степеней свободы 15, 17, 31, 35, 78, 126 — Вынужденные колебания 105—109 — Свободные колебания 63, 64  [c.349]

Основная особенность процесса свободных колебаний систем с бесконечным числом степеней свободы выражается в бесконечности числа собственных частот и форм колебаний. С этим связаны и особенности математического характера вместо обыкновенных дифференциальных уравнений, описывающих колебания систем с конечным числом степеней свободы, здесь приходится иметь дело с дифференциальными уравнениями в частных производных. Кроме начальных условий, определяющих начальные смещения и скорости, необходимо учитывать и граничные условия, характеризующие закрепление системы.  [c.184]

КИНЕТИЧЕСКАЯ И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ МАЛЫХ СВОБОДНЫХ КОЛЕБАНИЙ КОНСЕРВАТИВНОЙ СИСТЕМЫ. Кинетическую энергию Т системы с конечным числом степеней свободы мы получим, подставив в формулу  [c.103]

Рамные конструкции, как и отдельные стержни, могут быть схематизированы в виде систем с конечным числом степеней свободы (см. стр. 305) в этом случае их рассчитывают согласно указаниям, приведенным в гл. 4. Ниже даны сведения о расчетах свободных и вынужденных колебаний плоских рам, рассматриваемых как системы с распределенными параметрами. При этом предполагается, что каждый из стержней, входящих в состав рамы, имеет постоянное поперечное сечение с жесткостью EJ и равномерно распределенную массу интенсивностью га.  [c.319]

При расчете свободных крутильных колебаний приведенной системы мы будем пользоваться основными свойствами, установленными в общей теории колебаний для систем с конечным числом степеней свободы  [c.142]

Свободные колебания системы с произвольным конечным числом степеней свободы  [c.591]

Особенности динамики упругих систем с распределенными параметрами. С увеличением числа степеней свободы упругой системы до бесконечности она превращается в систему с распределенными параметрами. Статика таких упругих систем рассматривалась в гл. VI и VII. Их динамика составляет раздел теории колебаний. Как и в упругих системах с конечны.м числом степеней свободы (свободных координат), колебания систем с распределенными параметрами имеют нормальные формы. Эти формы зависят от конфигурации системы и способов ее закрепления и опирания. На рис. 8.24 изображены нормальные формы поперечных колебаний тонкого стержня с шарнирно опертыми концами.  [c.233]

Резюме о свободных и вынужденных колебаниях. Повторим ввиду их важности некоторые ранее полученные результаты, относящиеся как к системам с конечным, так и с бесконечным числом степеней свободы.  [c.218]

Исследование свободных колебаний системы с жидким наполнением [53] сводится к хорошо изученной задаче о свободных колебаниях системы с бесконечным или конечным числом степеней свободы.  [c.38]

Вводные замечания. В ряде случаев исследование колебаний систем как с конечным, так и бесконечным числом степеней свободы описанными выше точными методами затруднительно вследствие большой математической сложности, состоящей либо в том, что дифференциальные уравнения имеют переменные коэффициенты, если, например, балка имеет неравномерное распределение масс и жесткостей вдоль оси, или в том, что порядок характеристического определителя очень высок и сложно не только решить характеристическое уравнение, но даже и составить его, т. е. раскрыть определитель. Встречаются случаи, в которых требуется быстрая, хотя бы и приближенная оценка динамических свойств системы. В перечисленных выше случаях приходится использовать или целесообразно использовать приближенные методы динамического анализа систем, состоящего в определении собственных частот колебаний, в установлении форм свободных колебаний, определении динамических коэффициентов и в проверке динамической прочности. В настоящем параграфе и рассматриваются такие методы.  [c.238]


Аналогичным путем мы можем доказать, что если система подвергается изменению, при котором потенциальная энергия данной конфигурации уменьшается, между тем как кинетическая энергия заданного движения остается неизменной, то периоды всех свободных колебаний увеличиваются, и наоборот. Этим предложением можно иногда воспользоваться для того, чтобы проследить за эффектом связи действительно, если мы предположим, что потенциальная энергия какой-нибудь конфигурации, нарушающей условие, налагаемое связью, постепенно возрастает, то мы приблизимся к такому положению вещей, когда данное условие наблюдается с любой желаемой степенью полноты. В течение каждого шага процесса каждое свободное колебание становится (вообще) более быстрым, и часть свободных периодов (в количестве равном числу потерянных степеней свободы) становятся бесконечно малыми. Практически того же самого результата можно достигнуть без изменения потенциальной энергии, предположив, что кинетическая энергия какого-нибудь движения нарушающего условие, налагаемое связью, беспредельно возрастает. В этом случае один или несколько периодов становятся бесконечно большими, но конечные периоды оказываются в конце концов теми же самыми, к каким мы приходим, увеличивая потенциальную энергию системы, несмотря на то, что в одном случае периоды только возрастают, а в другом только убывают. Этот пример показывает, насколько необходимо делать изменения последовательными шагами в противном случае нам не удалось бы понять соответствия между двумя группами периодов. Дальнейшие иллюстрации будут даны для случая двух степеней свободы.  [c.133]

Приведте дифференциальные уравнения свободных колебаний системы с конечным числом степеней свободы и укажите их об1цее решение  [c.178]

Любая упругая система независимо от числа и характера наложенных на нее связей представляет собой систему с бесконечным числом степеней свободы, но при переходе к расчетной схеме она может быть заменена системой с конечным числом степеней свободы (или даже с одной степенью свободы). Проиллюстрируем сказанное на примере консольной балки с грузом на свободном конце (рис. 13-17, а). Если допустить, что. масса груза значительно больше массы балки и груз имеет такую форму и размеры, что момент инерции его относительно осей, проходящих через центр тялсести, мал, а жесткость балки значительна (прогибы малы) и рассматриваются только колебания в вертикальной плоскости, то координата а перемещения конца балки полностью определяет положение системы в любой момент времени. Следовательно, система может рассматриваться как обладающая одной степенью свободы (рис. 13-17, б). Несоблюдение хотя бы одного из сделанных выше предполсжений о характере величин, определяющих колебания системы, привело бы улсе к другой расчетной схеме. Если существенными в задаче являются не только колебания в вертикальной плоскости, но и любые другие, так что конец балки описывает в общ,ем случае какую-то плоскую кривую, то, раскладывая движение груза на вертикальную и горизонтальную составляющие, получаем расчетную схему (рис. 13-17, в), соответствующую системе с двумя степенями свободы.  [c.341]

Способ Релея — Ритца в применении к поперечным колебаниям стержня. Способ Релея, изложенный в применении к системам с конечным числом степеней свободы, находит применение и для приближенного определения частоты основного тона свободных колебаний балки. Пусть V [z) — прогиб балки под действием нагрузки q (z)i Составим выражение  [c.391]

Итак, в прикладных проблемах линейные задачи теории стоячих волн представляют основной интерес. Тем не менее на ряд вопросов линейная теория ответить не может. Например, при настройке системы управления важно знать зависимость частоты колебаний от амплитуды. Иногда полезно знать (с высокой степенью точности) структуру волновой поверхности и т. д. Поэтому нелинейная теория представляет определенный интерес для практики. Однако, как мне кажется, наибольший интерес нелинейная теория стоячих волн имеет для математика. В теории установившихся волн проблема существования решений довольно элементарна. В теории стоячих волн дело обстоит значительно сложнее. Первая работа в этой области была сделана Я. И. Секерж-Зеньковичем (1957), который предложил процедуру последовательных приближений, позволяющую рассчитать нелинейные стоячие волны в безграничной жидкости. Эта задача дает ответ о характере нелинейных волн, возникающих в сосуде, ограниченном вертикальными стенками, в предположении, что глубина сосуда бесконечна. В начале пятидесятых годов ту же проблему для сосудов произвольной формы изучал Н. Н. Моисеев. Колеблющаяся жидкость рассматривалась как некоторая система Ляпунова счетного числа степеней свободы. Была развита теория, в рамках которой удалось рассмотреть как свободные, так и вынужденные колебания. Была построена полная аналогия с колебательной системой Ляпунова конечного числа степеней свободы и показано, что для того, чтобы провести все вычисления, достаточно уметь решать соответствующую линейную задачу. Разумеется, развитая теория позволяла изучать только такие волновые процессы, которые близки к тем, которые описываются линейной теорией. (Полное изложение этой теории нелинейных волн можно найти в монографии Н. Н. Моисеева и А. А. Петрова, 1965.)  [c.64]

Устройства, способные совершать К., наз. колебательными системами. Различают свободные К., вынужденные К., а также К., возникающие в системах, обладающих нелинейностью, при наличии в них источника энергии (автоколебания). Свободными наз. К., происходящие в системе после вывода её из состояния равновесия и предоставления самой себе. Любые свободные К. можно представить в виде суперпозрщии гармонич. собственных К. системы [нормальных колебаний), частоты к-рых образуют дискретную последовательность. В колебательных системах с конечным число1м степеней свободы число различных возможных нормальных К. равно числу степеней  [c.162]



Смотреть страницы где упоминается термин Свободные колебания системы с конечным числом степеней свободы : [c.164]    [c.240]    [c.352]   
Смотреть главы в:

Курс теории колебаний  -> Свободные колебания системы с конечным числом степеней свободы



ПОИСК



Колебания свободные

Колебания систем с конечным числом степеней свободы

Свободные колебания систем с конечным числом степеней свободы (общий случай)

Свободные колебания системы с произвольным конечным числом степеней свободы

Система с конечным числом степеней

Система с конечным числом степеней свободы

Система с конечным числом степеней свободы 15, 17, 31, 35, 78, 126 — Вынужденные колебания 105—109 — Свободные колебания

Система свободная

Степени свободы системы

Степень свободы

Степень свободы (число степеней)

Число колебаний

Число степеней свободы

Число степеней свободы системы

Число степенен свободы

Число степенной свободы



© 2025 Mash-xxl.info Реклама на сайте