ПОИСК Статьи Чертежи Таблицы Предмет механики разрушения из "Механика деформируемого твердого тела " Следует отметить, что в последние годы появилось очень большое число монографий по механике разрушения. Упомянем семитомный переводной труд энциклопедического характера Разрушение , монографии Морозова и Партона, Черепанова, ряд переводных сборников. Многие авторы понимают под механикой разрушения именно и только механику распространения трещины. Но в теории трещин предполагается, что материал остается упругим и не меняет своих свойств всюду, кроме окрестности конца трещины, которая или стягивается в точку в линейной механике, или рассматривается как пластическая область или область больших упругих деформаций. Такая точка зрения далеко не исчерпывает многообразия реальных процессов разрушения. При переменных нагрузках, например, уже после относительно небольшого числа циклов в материале появляются субмикроскопические трещины, которые растут и сливаются в макроскопические трещины, приводящие к видимому разрушению. Не вдаваясь в детали микроскопической картины, этот процесс можно представить как накопление поврежденности, характеризуемой некоторым параметром состояния. Кинетика изменения этого параметра должна быть включена в определяющие уравнения среды. Такая точка зрения лежит в основе того, что можно назвать механикш рассеянного разрушения. Соответствующая теория развивается применительно к усталости металлов и длительной прочности при высоких температурах. [c.653] ОДНОГО И ТОГО же материала можно говорить не о постоянной характеристике, а о ее статистическом распределении. Если модуль упругости и предел текучести меняются в узких пределах и расчет по средним значениям достаточно достоверен, то прочность хрупких материалов и их структурных составляющих должна рассматриваться как случайная величина и отвлечься от ее статистического характера принципиально невозможно. Именно статистическая теория позволяет объяснить и оценить количественно так называемый масштабный эффект прочность большого изделия всегда оказывается меньше, чем прочность малой его модели (после пропорционального перерасчета, конечно). Изложение современных статистических теорий прочности заняло бы слишком много места, однако некоторые сведения нам представлялось необходимым сообщить. Эти сведения особенно существенны для понимания природы прочности современных композитных материалов, состоящих из полимерной или металлической матрицы, армированной угольным, борным илп иным высокопрочным волокном. Разброс свойств армирующих волокон довольно велик и для нопимания того, в какой мере эти свойства могут быть реализованы в композите, необходимо некоторое представление о статистической природе его прочности. Именно поэтому изложение элементов статистической теории будет дано ниже, в гл. 20. [c.654] Вернуться к основной статье