Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закономерности термодинамических процессов

Закономерности термодинамических процессов  [c.50]

Классическая термодинамика является мощным средством исследования обратимых процессов. И метод циклов, и метод термодинамических потенциалов позволяют получить основные закономерности термодинамических процессов, не вскрывая их молекулярного механизма.  [c.234]

Задачей анализа любого термодинамического процесса является установление закономерностей изменения параметров состояния рабочего тела и выявление особенностей превращения энергии. Порядок выполнения анализа следующий выводится уравнение процесса в /1 — о-координатах устанавливается зависимость между изменяющимися термическими параметрами процесса определяется изменение удельной внутренней энергии Ап рабочего тела определяются удельные работа и теплота в процессе, необходимые для осуществления процесса устанавливаются изменения удельных энтальпии Ай и энтропии Аз между начальным и конечным состояниями процесса.  [c.44]


При изучении равновесных и обратимых термодинамических процессов идеальных газов должны быть выявлены во-первых, закономерность изменения основных параметров, характеризующих состояние рабочего тела во-вторых, особенности реализации условий первого закона термодинамики.  [c.20]

Первым законом термодинамики, как это следует из предыдущего, устанавливаются а) эквивалентность взаимных превращений тепла и работы и, следовательно, количественные отношения между теплом и работой при этих превращениях б) постоянство энергии изолированной термодинамической системы в) взаимная связь между теплом, внутренней энергией системы и работой изменения объема, совершаемой ею или совершаемой над ней окружающей средой. Этих закономерностей недостаточно для того, чтобы на их основе можно было решить целый ряд практически важных вопросов, таких как установление факторов, определяющих условия возникновения термодинамических процессов, направление и границы их развития и условия превращения тепловой энергии в механическую.  [c.24]

Рассматриваемые ниже циклы являются идеализацией действительных процессов, протекающих в реальных двигателях. Сущность этой идеализации состоит в том, что действительные процессы заменяют обратимыми термодинамическими процессами идеальных газов, что дает возможность использовать при их анализе необходимые закономерности, полученные выше для идеальных газов.  [c.70]

Важность и значение термодинамического метода состоит в том, что он позволяет получать основные закономерности квазистатических процессов, не вскрывая их молекулярного механизма.  [c.148]

Закономерные изменения параметров идеального газа носят названия термодинамических процессов из них особый интерес представляет изоэнтропный процесс, подчиняющийся уравнению изоэнтропы  [c.31]

Естественно возникает вопрос, можно ли для любого рабочего агента производить расчеты термодинамических процессов по закономерностям идеального газа при указанной замене переменных.  [c.62]

Располагая закономерностями различных термодинамических процессов, мы можем приступить к подробному рассмотрению циклов и принципиальных схем реальных тепловых установок. Условимся в дальнейшем тепловые установки, в которых осуществляется прямой цикл (т. е. цикл, в котором производится работа, отдаваемая внешнему потребителю), называть теплосиловыми установками, а установки, работающие по обратному циклу (т. е. циклу, для осуществления которого затрачивается работа, подводимая извне), — холодильными установками.  [c.299]


Исходная внутренняя информация. Сюда относится систематизированное аналитическое, табличное или алгоритмическое описание 1) закономерностей и характеристик протекания технологических процессов (изменение внутреннего относительного к.п.д. турбомашин, характеристик термодинамических процессов и т. д.) 2) термодинамических и теплофизических свойств рабочих тел и теплоносителей 3) характеристик разнотипных конструкций оборудования, а также условий и ограничений, накладываемых на параметры и характеристики конструкций.  [c.167]

Расчетно-теоретический и экспериментальный анализ многочисленных разновидностей процессов с миграцией теплоносителя показывает резко выраженное несоответствие между закономерностью этих процессов и закономерностями так называемых типовых термодинамических процессов.  [c.14]

Таким образом, полученные общие соотношения термодинамики тела переменной массы позволили выполнить исчерпывающий термодинамический анализ процессов опорожнения и наполнения, теоретически объяснив все закономерности этих процессов.  [c.68]

В термодинамическом анализе, основанном на расширенных концепциях, тепловой двигатель — это техническое устройство, осуществляющее закономерно повторяющиеся процессы превращения тепла в работу посредством рабочего тела переменно массы, подвод энергии к которому производится включением в его состав вещества-теплоносителя.  [c.69]

В общем случае изменения состояния рабочего тела последнее вступает во взаимодействие с источниками тепловой и механической энергии системы, что определяет характер изменения параметров рабочего тела — давления, объема и температуры. В технической термодинамике изменение запаса энергии в тепловом источнике принято называть количеством подведенного или отведенного тепла, или внешним теплом, участвующим в процессе, а изменение запаса механической энергии в источнике выражать величиной работы при расширении или сжатии рабочего тела или внешней работой. Основные задачи исследования термодинамических процессов состоят из изучения закономерности изменения состояния рабочего тела и определения принципа распределения энергии в рассматриваемом процессе. Содержание исследования термодинамических процессов состоит из следующего  [c.45]

В первой части (гл. 1—11) освещены известные, классические представления о строении кристаллов и. их свойствах. Изложены основные положения о симметрии кристаллов и о типах кристаллических решеток. Далее автор переходит к описанию термических и калорических свойств кристаллов и квантовомеханическому расчету теплоемкости кристаллов по Эйнштейну и Дебаю. В книге подробно развит термодинамический метод анализа важнейших свойств кристаллов, в особенности, для определения условий фазовых равновесий и полиморфных превращений. Последовательная термодинамическая трактовка проходит через все разделы книги и составляет в известном смысле ее логический стержень. Наряду с термодинамическими расчетами в ряде случаев используются методы, основанные на приближенной оценке межатомных взаимодействий. В этих главах сообщаются также элементарные сведения о кинетических закономерностях важнейших процессов, происходящих в кристаллах, в том числе—о процессах диффузии. Наконец, дается представление о реальной структуре кристаллов и о видах структурных дефектов.  [c.11]

Основными задачами исследования термодинамических процессов являются изучение основных закономерностей изменения состояния рабочего тела в процессе и определение закона распределения энергии в данном процессе.  [c.75]

В задачу исследования термодинамических процессов входит а) установление закономерности изменения параметров состояния рабочего тела в процессе б) выявление особенности превращения в рассматриваемом процессе энергии. С этой целью проводится анализ процесса в следующем порядке  [c.30]

Сложность конечных формул зависит от характера закономерностей, которым подчиняется состояние энергоносителя в термодинамических процессах. При расчете, например, паровой турбины необходимо максимальное приближение к реальным условиям системы в силу высоких требований к конечной точности формул, вытекающей из назначения турбины. Для молотов же с их произвольным режимом работы оказываются вполне приемлемыми упрощения, лишь бы они в определенной степени отвечали условиям работы рассчитываемой системы.  [c.402]


Первопричиной коррозии металлов, в том числе и электрохимической коррозии, является их термодинамическая неустойчивость. При взаимодействии с электролитами металлы самопроизвольно растворяются, переходя в более устойчивое окисленное (ионное) состояние. Большой теоретический и практический интерес представляет механизм этого саморастворения металлов, т. е. механизм коррозионного процесса, его основные закономерности, скорость протекания процесса и характер коррозионного разрушения.  [c.180]

В настоящее время нет никаких оснований для проведения резкой грани между термодинамикой и статистической физикой тем не менее определенное преимущество термодинамики и особенность ее методов диктуют важность отдельного изложения термодинамики с привлечением необходимых качественных молекулярных представлений. Она позволяет с помощью своих начал легко учитывать наблюдаемые на опыте закономерности и получать из них фундаментальные следствия. Именно на этом пути в свое время было предсказано вырождение газов при низкой температуре, развита теория фазовых переходов второго рода, формируется термодинамическая теория кинетических явлений в физических системах неравновесная термодинамика или термодинамика необратимых процессов).  [c.10]

В гл. 3 мы отмечали, что второе начало термодинамики устанавливает, во-первых, общую закономерность превращения теплоты в работу и, во-вторых, выражает специфические закономерности как обычных, так и необычных систем. Общая закономерность превращения теплоты в работу в обоих случаях систем состоит в том, что при таком превращении в замкнутом круговом процессе часть теплоты непременно отдается рабочим телом другим телам. Этот (первый) элемент компенсации, который в случае обычных систем совпадает со вторым элементом компенсации (изменением термодинамического состояния других тел), приводит к существованию энтропии у равновесной системы (см. 13). Отсюда следует, что второе начало, сформулированное Каратеодори, не изменяется вблизи каждого состояния любой термически однородной системы существуют такие состояния, которые недостижимы из него адиабатным путем. Это означает, что у всякой равновесной системы в состоянии с отрицательной абсолютной температурой (как и в случае обычных систем) существует энтропия как функция ее состояния  [c.142]

Специфическая закономерность превращения теплоты в работу и работы в теплоту в случае обычных систем, как известно, состоит в том, что если при превращении теплоты в работу в замкнутом круговом процессе происходит изменение термодинамического состояния других тел, то превращение работы в теплоту не связано с таким изменением  [c.142]

Термодинамический анализ обратимых и необратимых процессов. Термодинамический анализ основывается на первом и втором началах термодинамики, из которых математическим путем выводятся относящиеся к рассматриваемому явлению закономерности. Эти частные закономерности столь же достоверны, как и сами фундаментальные законы, положенные в основу термодинамики. Если учесть, что термодинамический метод может применяться к самым разнообразным явлениям, то станет вполне очевидна общность этого метода.  [c.158]

Таким образом, область применения термодинамики необратимых процессов ограничивается не очень большим значением градиентов, определяющих поведение системы термодинамических параметров. С физической точки зрения это означает, что рассматриваемая система допускает раздел на столь большое число частей, что каждая из них может считаться находящейся в локальном равновесии, т. е. в состоянии, практически не отличающемся от равновесного. Вследствие этого становится закономерным применение термодинамических методов для локального описания любой из частей системы.  [c.340]

Выражения (4.36) и (4.37) представляют термодинамическую (энтропийную) модель металлополимерной трибосистемы, рассматриваемой в качестве открытой термодинамической системы. Известно, что имеющиеся в арсенале конструкторов расчетные зависимости на износ н долговечность носят эмпирический характер и не учитывают действительную картину и природу изнашивания поверхностей трения. Предлагаемая же модель открывает принципиальную возможность оценить интенсивность изнашивания металлополимерной пары трения на этапе проектирования машины на основе закономерностей физико-хи-мических процессов в зоне трения и физических свойств изнашиваемого материала. Для этого необходимо записать уравнения потоков энергии и вещества для каждого слагаемого подынтегрального выражения согласно физическому закону соответствующего эффекта (теплового, электрического, диффузионного) и решить эти уравнения при соответствующих начальных и граничных условиях, а также, используя выражение (4,32), определить А. для выбранного композиционного материала, Однако задача получения аналитического выражения для соответствующих эффектов требует проведения сложных теоретических и экспериментальных исследований и составляет одну из актуальных задач трибологии на ближайшие десятилетия.  [c.121]

В реальных трибосистемах интенсивность процессов накопления дефектов и увеличения плотностей внутренней энергии и энтропии всегда вьш е, и с течением времени названные термодинамические параметры достигают критических значений, при которых наступает разрушение структуры поверхностного слоя. Эта закономерность является общей для всех нагруженных деформируемых твердых тел независимо от их природы.  [c.268]

Техническая термодинамика вместе с теорией теплопередачи являются теоретическими основами теплотехники, в частности основами для изучения тепловых двигателей, назначение которых —непрерывно превращать теплоту в работу. Поэтому основная задача технической термодинамики — изучение закономерностей превращения теплоты в работу и условий, при которых эти процессы совершаются наиболее элективно. Превращение теплоты в работу происходит с помощью упругого тела (газа или пара), называемого рабочим телом теплоэнергетической установки. Поэтому в курсе технической термодинамики изучаются также термодинамические свойства рабочих тел.  [c.7]


Расчеты таких процессов могли выполняться ранее только аналитическими методами, что было связано с большой затратой труда и времени, и главным образом в тех нередких случаях, когда решение приходилось находить путем подбора. К этому следует добавить, что не всегда имелось достаточно ясное представление об основных закономерностях рассчитываемого процесса. Поэтому насущной потребностью инженерной практики в настоящее время является исследование закономерностей термодинамических процессов парогазовых смесей и разработка на основе этих исследований простых и надежных методов расчета. В настоящей книге автдр-попытался выполнить эту задачу.  [c.3]

Чтобы оттенить фундаментальные положения термодинамики, имеющие наиболее широкое применение в самых различных областях науки и техники, признано целесообразным в основной части курса рассмотреть первое начало термодинамики применительно главным образом к закрытой системе, а для открытой системы (потока) — только в таких условиях, когда изменением кинетической энергии видимого движения рабочего тела можно пренебречь, что допустимо, в частности, при рассмотрении преобразования энергии в турбине или в компрессоре в целом. В полной же мере первое начало термодинамики для потока упругой жидкости излагать далее, непосредственно перед рассмотрением закономерностей истечения, в XIV главе Термодинамика потока —в сочетании с другими вопросами потока. Энтропия, удельная энтропия и диаграмма Ts вводятся на рассмотрение раньше термодинамических процессов, что позволяет изучать последние одновременно в двух системах координат pv и Ts. Математически удельная энтропия вводится как функция состояния с помощью интег-рирующёго множителя для элемента теплоты, а физически — как параметр состояния, изменение которого в равновесных процессах служит признаком теплообмена, определяет значение и знак теплоты.  [c.3]

Не углубляясь в теорию термодинамического подобия, рассмотрим здесь, имея в виду последующие приложения, два вопроса во-первых, при каких обстоятельствах признаки и закономерности подобия (в отношении термических свойств), установленные применительно к гомогенным телам, могут быть распространены на двухфазные среды и, во-вторых, каковы предпосылки подобного между собой протекания термодинамических процессов с влажными парами различных веществ. Выяснение этих вопросов связано с задачами моделирования двухфазных потоков и определением условий универсальности некоторых характеристик процесса течения влажных пароь сходственных веществ.  [c.51]

Рассмотрим основные термодинамические процессы, выясним их закономерности и установим соотношения, связывающие между собой параметрьг состояния вещества в этих процессах.  [c.214]

При восстановлении изношенных деталей используют закономерности электрохимических процессов, относящиеся к превращению электрической энергии в химическую. К ним относятся законы электролиза, термодинамические и кинетические закономерности электрохимических процессов. Теоретическое значение массы вещества т (в фаммах), выделившегося на электроде, определяется с помощью объединенного закона М. Фарадея  [c.408]

В расчетах промышленных установок важное значение имеют термодинамические расчеты процессов газификации сернистых мазутов, выполненные в ИГИ. Полученный в результате расчетов состав продуктов газификации соответствует состоянию термодинамического равновесия. Методика расчетов, предложенная ИГИ, основана на использовании термодинамических закономерностей химических процессов и позволяет оценить возможный предельный результат процесса при различных температурах, давлениях и различном соотношении исходных реагентов — мазута, кислорода, водяного пара и др. Выполненные термодинамические расчеты в интервале температур процесса газификации от 1000 до 2000 К, давлений от 0,1 до 10,0 МПа, коэффициента расхода кислорода а = 0,18- 0,83 и относительного расхода пара Р = 0,5- 2,16 позволяют установить оптимальные условия образования основных горючих компонентов газа, границы выделения элементарного углерода в виде сажи, а также количество и состав газообразных сернистых соединений. Введение в мазут в качестве катализатора соли нитрата кальция Са(ЫОз)г перед его газификацией в количестве 0,1% позволяет уменьшить сажевыделение более чем в два раза по сравнению с газификацией без катализаторов.  [c.104]

Оказалось, что результаты, полученные при использовании псевдоцикла Стирлинга, соответствуют закономерностям и характеристикам реальных двигателей, хотя некоторые выводы и вызывают возрджения. Основные сомнения связаны с интерпретацией идеального цикла, поскольку, по некоторым замечаниям, в нем используются газодинамические процессы, которые не достижимы или не встречаются в практическом двигателе. Подобные замечания справедливы, но довольно очевидны, поскольку идеальные циклы по определению состоят из идеальных и обратимых термодинамических процессов, которые не достижимы в реальных устройствах. Однако использование идеальных циклов и интерпретацию результатов последующего анализа необходимо согласовывать с практическими возможностями. Проблема заключается в том, как найти зо.потую середину . Например, цикл с двойным сгоранием, используемый при анализе рабочего процесса, протекающего в дизеле, дает более реальные значения рабочих характеристик, чем исходный цикл дизеля, но его сочли гипотетическим циклом, выдуманным для того, чтобы получить приемлемые результаты, пока не отражающие идеальных характеристик дизельного двигателя [4]. Если бы критические замечания относительно псевдоцикла Стирлинга основывались на тех же доводах, они были бы более обоснованными. Во всяком случае, этот вопрос интересен в основном для педантов. Трудность проблемы состоит в том, что двигатели Стирлинга не работают по циклу Стирлинга, и в литературе царит путаница в вопросе о том, какие нужно применять критерии работы и рабочие характеристики.  [c.229]

Об основе. методов термодинамических исследований. В термодинамике устанавливаются закономерности физических процессов, в связи с чем каждое тремодинамическое исследование должно базироваться на физической сущности рассматриваемого явления, а не на каких-либо математических, отвлеченных положениях. Метод термо-  [c.293]

Примечание. Соответствие между наблюдением массы и изменением нарушения симметрии давно известно в физике элементарных частиц ...оказывается, принципы симметрии, справедливые на изначальном уровне, не проявляются на уровне наблюдаемых непосредственно на опыте величин, например масс частиц.. .. механизм спонтанного (т. е. самопроизвольного, наше примечание) нарушения калибровочной симметрии приводит к появлению масс у промежуточных бозонов и тем самым к различиям во внешних проявлениях слабых и электромагнитных взаимодействий [72]. С экспериментальным подтверждением существования бозонов есть много неясного, но для фотонов наблюдение их массы и изменение нарушения симметрии происходят при образовании и аннигиляции пар электронов и позитронов. Спонтанные нарушения симметрии как закономерность используются в доказательстве существования античастиц [120]. Термин изменение нарушения симметрии можно детализировать, отметив, в частности, возможную регулярность изменения. В термодинамических процессах имеются изменения нарушения симметрии, которые описываются как стохастические . Регулярные , стохастические и спонтанные изменения нарушения симметрии наблюдаются как закономерности в микро-, макро- и мегамире. Соотнесение характера изменения с определённой масштабной областью не является, вообще говоря, однозначным, поскольку наблюдение изменения нарушения  [c.242]


Поэтому первая и вторая (динами<[еская и объемная) вязкости, связывающие напряженное состояние среды с градиентами и дивергенцией потоков скоростей, были дополнены третьей (ротационной), описывающей вихри потоков технологической среды. Использование полученных коэффициентов вязкости в критерии Рейнольдса позволило исследовать закономерности процессов формирования термодинамических структур при увеличении скорости обработки и мощности дополчитель-ных воздействий концентрированными потоками энергии [2].  [c.165]

Хотя процессы, используемые в газовых и паровых компрессионных холодильных машинах, могут быть применены и для получения глубокого холода, например ожижения воздуха, подробное рассмотрение физических закономерностей, на которых они базируются, включено в разделы 1 и 2, чтобы дать термодинамические основы для последующего изложення.  [c.7]

Вероятностное поведение макроскопических систем , состоящих из громадного числа механически движущихся частиц, является характерной особенностью теплового движения, качественно отличающей его от классического механического движения с присущей ему однозначностью. Наличие огромного числа частиц в термодинамических системах обусловливает второстепенность механических закономерностей движения отдельных частиц и возникновение закономерностей их совокупного, массово] о движения. Принимая основной (первый) постулат, термодинамика таким образом ограничивает себя, исключая из рассмотрения системы, для которых равновесное состояние невозможно (процессы в таких системах не завершаются наступлением равновесия), а также все  [c.17]

Первое положение второго начала указывает на невозможность с помощью замкнутого кругового процесса превратить теплоту в работу без компенсации. Понятие компенсации, как видно из его определения, содержит отдачу части теплоты рабочим телом другим телам и изменение термодинамического состояния этих других тел при превращении теплоты в работу в замкнутом круговом процессе. В случае обычных, наиболее распространенных систем О ба эти элемента компенсации совпадают, так как отдача части теплоты рабочим телом другим телам при. круговом процессе в этом случае безвозвратна и автоматически влечет изменение термодинамического состояния этих других тел. В случае спиновых систем эти элементы компенсации не совпадают, вследствие чего с помощью спиновых систем теплоту какого-либо тела можно цели.ком превратить в работу с помощью кругового процесса без изменения термодинамического состояния других. тел. Однако такое превращение, как и в случае 0 быч1ных систем, обязательно сопровождается отдачей части теплоты рабочим телом другим телам. Эта общая закономерность (общий элемент компенсации) превращения теплоты в работу лриводит к существованию энтропии как у обычных, так и необычных равновесных систем.  [c.43]

Дальнейшее обобщение и развитие энергетических концепций стали возможны на основе фундаментальных законов термодинамики. Трибосистема с позиций термодинамики необратимых процессов, как отмечалось выше, при определенных условиях является открытой термодинамической системой, обменивающейся энергией и веществом с окружающей средой. Известно, что в термодинамике неравновесных систем в отличие от равновесной термодинамики изучают изменения состояний, протекаюи ,ие с конечными, отличными от нуля скоростями. Предмет исследования - переносы массы, энергии, вызванные различными факторами, называемыми силами. Причиной возникновения потока всегда являются различия в значениях термодинамических сил температуры, давления и концентрации или их функции, т.е. перепады, или градиенты. Поэтому поток теплоты в трибосистеме появляется, если возникает градиент температуры, а поток вещества есть следствие наличия градиента концентрации и т.д. Следовательно, термодинамические силы представляют собой градиенты, характеризующие удаленность трибосистемы от термодинамического равновесия. Суть применения законов классической термодинамики к неравновесным системам заключается в предположении о локальном равновесии внутри малых элементов областей системы. Представление о локальном равновесии позволяет изучать больп1ое число практически важных неравновесных систем, к которым с полным основанием можно отнести и трибосистемы. При этом все уравнения сохраняют свою ценность по отношению к малым областям, а значит, и общность описываемых ими закономерностей. Так, уравнение Гиббса, показываюилее зависимость внутренней энергии U от энтропии S, объема и химических потен-  [c.107]


Смотреть страницы где упоминается термин Закономерности термодинамических процессов : [c.219]    [c.58]    [c.85]    [c.60]   
Смотреть главы в:

Термодинамика и теплопередача  -> Закономерности термодинамических процессов



ПОИСК



Процессы термодинамические



© 2025 Mash-xxl.info Реклама на сайте