Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон сохранения момента импульса для системы материальных точек

Функция Гамильтона системы. Динамические уравнения механики, основанные на законах Ньютона, приводят к первым интегралам движения или к законам сохранения энергии, импульса, момента импульса системы материальных точек (глава IV). Также обстоит дело и с уравнениями Лагранжа, описывающими движение системы в обобщенных координатах они приводят к сохранению некоторых величин, носящих название обобщенной энергии и обобщенных импульсов.  [c.193]


Закон сохранения момента импульса для системы материальных точек  [c.305]

Это уравнение выражает закон сохранения импульса системы материальных точек общий момент импульса системы относительно какой-либо неподвижной оси остается постоянным, если момент внешних сил относительно этой оси равен нулю.  [c.306]

Рассмотрим движение материальной точки массы т под действием центральной силы, произвольно зависящей только от расстояния между точкой и центром силы. Такая сила потенциальна и стационарна (см. с. 69). Помещая начало системы отсчета в центр силы и используя законы сохранения момента импульса и энергии, получим четыре первых интеграла движения  [c.77]

В этом параграфе доказываются законы сохранения энергии, импульса и кинетического момента для системы материальных точек в Е .  [c.44]

Теорема об изменении момента импульса системы. Закон сохранения момента импульса. Теорему об изменении момента импульса для одной материальной точки мы получили в 10 и кратко выразили уравнением (10.4). В правой части уравнения стоит сумма моментов сил, или момент равнодействующей силы, приложенной к материальной точке.  [c.136]

Законы сохранения импульса и кинетического момента замкнутой системы материальных точек во времени могут быть приняты в качестве основ--ных аксиом механики.  [c.124]

Наличие законов сохранения импульса, кинетического момента и полной энергии замкнутой системы материальных точек связано с инвариантностью уравнений Ньютона относительно группы преобразований Галилея.  [c.17]

Этот закон выполняется в инерциальных системах отсчета и для изолированной свободной материальной точки, т. е. точки, движущейся по инерции. Однако гораздо существеннее то, что сохранение момента импульса может иметь место в силовом поле. Рассмотрим отдельные случаи сохранения момента импульса при действии сил на движущуюся точку.  [c.115]

Закон сохранения энергии и импульса для замкнутой изолированной релятивистской системы. Рассмотрим сначала макроскопическую систему заряженных тел (материальных точек) и непрерывного (электромагнитного) поля. Система называется в механике замкнутой, если в ней действуют только внутренние силы, т. е. силы взаимодействия только между точками системы. Как известно, для потенциальных сил в замкнутой системе сохраняется механическая энергия, а для любых сил — импульс и момент импульса системы. Соответствующие величины введены выше для релятивистских частиц, и показано, что в системе невзаимодействующих частиц, т. е. системе без поля, они сохраняются. Теперь переходим к системе с взаимодействием.  [c.275]


Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]

Обратимся к законам сохранения импульса и кинетического момента в пространстве. Примем какую-либо инерциальную систему за основную ( неподвижную ) и рассмотрим различные положения замкнутой системы материальных точек в один и тот же момент времени, предполагая, что расстояния между точками не изменяются. Очевидно, что это будет равносильно такому преобразованию, при котором изменяются координаты точек, но время не преобразуется. Ограничимся здесь ортогональными преобразованиями с сохранением масштаба, записывая их в векторной форме.  [c.124]

Как известно из классической механики, систему из N частиц в случае пренебрежения их пространственной структурой (т. е. когда частицы рассматриваются как материальные точки) можно описать при помощи ЗМ дифференциальных уравнений, которым соответствуют 6Л интегралов движения, т. е. величин, сохраняющихся при изменениях, происходящих в системе. Полное число интегралов движения, естественно, задается тем, что в каждый момент времени система определяется ЗМ координатами и ЗА импульсами частиц (см., например, [1]). Среди 6А интегралов движения ) не все играют одинаковую роль. Чтобы выяснить эту роль, рассмотрим изолированную систему, т. е. систему, которая не подвержена действию внешних сил ). Для такой системы имеется десять интегралов движения, которые соответствуют физическим величинам, всегда сохраняющимся при любом произвольном взаимодействии между частицами системы во время движения. Эти величины, по крайней мере, в принципе можно измерить на опыте в рамках классической механики. 10 интегралов движения можно представить, в соответствии с их физическим смыслом, следующим образом 10 = 4-1-3-2. Цифра 4 соответствует закону сохранения  [c.9]

К замкнутой системе твердых тел, так же как к замкнутой системе материальных точек, могут быть применены законы сохранения импульса и момента импульса. При суммировании уравнений движения и уравнений моментов внутренние силы, действующие между отдельными твердыми телами, исключаются (в силу третьего закона Ньютона). Поэтому, если на систему твердых тел не действуют внешние силы, то ее общий импульс остается постоянным. Точно так >ке, если сумма моментов всех внешних сил равна нулю, ю общий момент импульса системы твердых тел остается 1ЮСтоянным, Применение закона сохранения импульса к системе твердых тел ла т, по существу, то же самое, что н в случае системы материальных точек, — jaKOH движегни) центра тяжести системы тел.  [c.421]

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рымя являются кол-во движения (см. И.чпульс), момент количестеа движения и кинетическая анергия, и О мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают свойства движения любой системы материальных точек и сплошной среды.  [c.127]


Интегралы импульса, кинетического момента и энергии, записанные в виде (3.24), (3.25) и (3.26), выражают основные законы механики—здаонь/ сохранения ео времени импульса, кинетического момента и энергии замкнутой системы материальных точек. Начало отсчета времени может быть выбрано произвольно — в этом проявляется однородность времени. Заметим еще, что интеграл энергии допускает обращение движения во времени функции Т и i/ не изменяются при замене dt на ( —d/) ).  [c.124]


Смотреть страницы где упоминается термин Закон сохранения момента импульса для системы материальных точек : [c.45]    [c.47]    [c.421]    [c.71]    [c.251]    [c.86]    [c.31]   
Смотреть главы в:

Физические основы механики  -> Закон сохранения момента импульса для системы материальных точек



ПОИСК



Закон моментов

Закон сохранения

Закон сохранения импульса

Закон сохранения импульса материальной точки

Закон сохранения момента

Закон сохранения момента импульса

Закон сохранения момента импульса для системы тел

Закон сохранения момента импульса точки

Закон точки

Импульс материальной точки

Импульс системы

Импульс системы сохранение

МОМЕНТ ИМПУЛЬСА МАТЕРИАЛЬНОЙ ТОЧКИ. СОХРАНЕНИЕ ЕГО

Материальная

Момент импульса

Момент импульса точки

Момент системы сил

Момент системы точек

Система материальная

Система материальных точек

Система точек

Сохранение

Сохранение импульса

Сохранение импульса и момента импульса

Сохранение момента импульса

Точка материальная



© 2025 Mash-xxl.info Реклама на сайте