Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Каноническая теория возмущений Интегрирование уравнений движения

Случай одной степени свободы. Продолжим начатое в п. п. 177-179 изучение некоторых вопросов, связанных с интегрированием консервативных и обобщенно консервативных систем. Будем изучать системы, движения которых обладают описанным ниже свойством периодичности. Для таких систем Делонэ предложил специальный выбор постоянных импульсов а (г = 1, 2,..., п) в характеристической функции Гамильтона п. 178. Эти новые импульсы представляют собой п независимых функций от набора величин появляющихся при нахождении полного интеграла уравнения Гамильтона-Якоби. Они называются действиями (точные определения см. далее) и ниже чаще всего будут обозначаться /. Канонически сопряженные к ним координаты wi называются угловыми переменными. Переменные действие-угол wi весьма удобны для описания движений, обладающих свойством периодичности. Они находят широкое применение в теории возмущений.  [c.371]


Первая часть теоремы является лишь простым обобщением теоремы Гамильтона, который требует, чтобы произвольные постоянные были начальными и конечными значениями координат и чтобы функция V удовлетворяла еще второму уравнению в частных производных. Вторая часть теоремы, относящаяся к варьированию произвольных постоянных, совершенно новая. Я изложил здесь, ради простоты, только случай свободного движения, но я легко распространил эту теорему на движение системы, подчиненной некоторым условиям. При помощи этой теоремы можно найти путем вычисления элементы, производные которых для возмущенного движения принимают ту простую форму, которую они имеют в теореме, форму, которую я в своей статье называю канонической. Это легко подтверждается в эллиптическом движении, где интегрирование уравнения в частных производных  [c.292]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]


При описании движения твердого тела используются различные системы переменных. Каждая система имеет свои преимущества и недостатки для каждой конкретной задачи. Так для поиска первых интегралов, исследования некоторых вопросов устойчивости и топологического анализа наиболее удобными являются такие переменные, в которых уравнения полиномиальны (или даже однородны). Для численного интегрирования, кроме простой системы дифференциальных уравнений желательно иметь наименьший порядок системы. Для качественного изучения, применения методов теории возмущений и нелинейной нормализации необходимы системы канонических переменных, наиболее отражающие специфику невозмущенной задачи. Здесь мы приводим основные наборы переменных, используемые в динамике твердого тела. На практике, особенно в приложениях к гироскопической технике, также используются различные комбинации и модификации этих систем, обладающих более специальными свойствами.  [c.39]

Метод Делоне возник из астрономических задач теории возмущений. Однако он был замечательным образом применен к задачам молодой квантовой теории. Квантовая теория Бора предполагала, что для вращающегося электрона разрешены лишь определенные орбиты. При движении по этим орбитам полностью отсутствуют потери энергии, так что движение происходит в соответствии с обычными законами механики. Таким образом, квантовая теория восприняла принципы механики, а следовательно, и канонические уравнения без каких бы то ни было модификаций. Она просто добавила определенные дополнительные ограничения на начальные условия. Теперь 2п констант интегрирования стали уже не произвольными величинами, а величинами  [c.289]

Весьма интересна работа о методе вариации произвольных постоянных в применении к интегрированию уравнений Гамильтона <<0 вариациях произвольных постоянных в задачах динамики . В этой работе О.строградский выводит с большим изяществом дифференциальные уравнения теории возмущений, выражая через скобки Пуассона производные от постоянных, входяпщх в интегралы невозмзтценйого движения. Интересно отметить, что в статье все время используются линейные формы от вариаций канонических перемен-  [c.21]

В этой исключительно ясно и просто написанной работе дается законченное изложение всех вопросов, связанных с задачами канонических преобразований и с задачей интегрирования уравнений Гамильтона методом отыскания полного интеграла. Обпще положения развиваемой им теории Донкин прилагав к установлению уравнений теории возмущенного движения. В своем изложении предмета Донкин широко пользуется функциональными определителями и скобками Пуассона, устанавливая для них новые соотношения и формулируя получаемые теоремы с помощью этих скобок.  [c.26]

Решение последней задачи методами численного интегрирования строгих уравнений движения неэффективно. Однако, используя теорию возмущений, можно получить приближенное аналитическое описание многообразия условно-периодических траекторий. По-видимому, к настоящему времени с наибольшей полнотой поставленная задача рассмотрена в работе [133]. Этой же задаче посвящена и настоящая глава книги. Примененный метод построения условно-периодических (и всех возможных других) траекторий вблизи Ь.2 основан на проведении ряда последовательных канонических преобразований переменных, приводящих функцию Гамильтона задачи к нормальной форме, для которой начальные условия, обеспечивающие различные (например, условно-периодические) тразктории, находятся весьма просто. Проведенные в настоящей главе построения могут быть положены в основу теории пассивного движения КА вблизи Ь .  [c.266]

Аналитическую теорию движения спутника с учетом величин второго порядка малости можно найти, например, в работах М. Д. Кислика [5] и А. Страбла [17]. В обшем подходе к описанию возмущенного движения спутника А. Страбл следует, по существу, идее Ганзена разложения движения, хотя вывод уравнений движения им получен новым пзггем и в иной форме. Он при интегрировании уравнений применяет методы теории нелинейных колебаний, в частности метод асимптотической теории Н. М. Крылова— Н. Н. Боголюбова — Ю. Д. Митропольского [1, 7 им получен ряд интересных результатов. А. Страбл в своей работе не придерживается общепринятых в небесной механике классических определений, что, как нам кажется, не является вполне оправданным. Совершенно иначе подошел к задаче М. Д. Кислик. Положение спутника относительно основной системы он определяет эллиптическими координатами, а уравнения движения записывает в канонической форме интегрирование уравнений он проводит классическим методом Гамильтона — Якоби. Известно, что в большинстве случаев в задачах небесной механики уравнение Гамильтона — Якоби не интегрируется в квадратурах М. Д. Кислик, оставаясь в пределах точности до второго порядка малости включительно, преобразовал выражение земного потенциала и разрешил уравнение Гамильтона Якоби в квадратурах.  [c.10]



Смотреть страницы где упоминается термин Каноническая теория возмущений Интегрирование уравнений движения : [c.6]   
Смотреть главы в:

Задачи по теоретической механике  -> Каноническая теория возмущений Интегрирование уравнений движения



ПОИСК



Вид канонический

Возмущение

Возмущение движения

Интегрирование

Интегрирование канонических уравнений

Интегрирование уравнений

Интегрирование уравнений движени

Канонические уравнения уравнения канонические

Каноническое уравнение движени

Теории Уравнения

Теория возмущений

Теория возмущений каноническая

Уравнения движения канонические

Уравнения движения — Интегрирование

Уравнения для возмущений

Уравнения канонические



© 2025 Mash-xxl.info Реклама на сайте