Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Собственные линейные колебания системы

Собственные линейные колебания системы  [c.426]

Дифференциальное уравнение собственных линейных колебаний системы  [c.392]

Если разделить обе части уравнения (4) на а и обозначить положительную величину = то получим дифференциальное уравнение собственных линейных колебаний системы с одной степенью свободы в окончательной форме  [c.394]

Собственные линейные колебания системы с одной степенью свободы являются гармоническими. Материальная точка под действием  [c.396]


Гармонические колебания полностью определяются амплитудой колебаний, периодом и начальной фазой. Отметим основные свойства собственных линейных колебаний. Собственные линейные колебания системы являются гармоническими. Амплитуда этих колебаний — величина постоянная и определяется начальными условиями. Период колебаний тоже величина постоянная, не зависящая от амплитуды и, следовательно, от начальных условий.  [c.397]

Итак, собственные линейные колебания системы с двумя степенями свободы состоят из суммы двух главных гармонических колебаний с частотами и к , которые содержатся в каждой обобщенной координате 91 и Заглавные координаты  [c.438]

Дифференциальное уравнение собственных линейных колебаний системы. Для вывода из уравнения Лагранжа (1) линейного уравнения малых собственных колебаний следует кинетическую и потенциальную энергии разложить в ряды в окрестности положения равновесия системы, где = 0.  [c.414]

Интегрирование дифференциального уравнения собственных колебаний. Если разделить обе части уравнения (4) на а и обозначить положительную величину с а = к , то получим дифференциальное уравнение собственных линейных колебаний системы с одной степенью свободы в окончательной форме  [c.416]

Итак, собственные линейные колебания системы с двумя степенями свободы состоят из суммы двух главных гармонических колебаний с частотами кх и За-  [c.462]

Теория собственных линейных колебаний системы с 5 степенями свободы во многом аналогична теории одномерных колебаний. В этой теории предполагается, что связи, наложенные на си-стему, идеальны, голономны и стационарны, а заданные силы явно от времени не зависят кроме того, предполагается, что система обладает по крайней мере одним положением устойчивого равновесия.  [c.262]

Допустим, что вынужденные колебания системы происходят в некоторой среде, для которой коэффициент затухания собственных линейных колебаний системы "к < (о . Уравнение движения системы запишем в виде  [c.234]

Величина периода определяется только свойствами колеблющейся системы, т. е. коэффициентом инерции а и жесткостью с. Независимость периода колебаний от амплитуды называется изохронностью колебаний. Собственные линейные колебания, если нет возмущающих сил, могут возникнуть только при начальных условиях, неравных нулю, т. е. когда в начальный момент система имеет не равные нулю начальную обобщенную координату <7о или начальную обобщенную скорость ро.  [c.397]


Если на колебательную систему, близкую к линейной консервативной, действует периодическая сила с частотой, существенно отличной от собственной частоты колебаний системы, то эта сила вызовет вынужденное колебание с частотой внешней силы и с амплитудой, в основном определяемой различием между частотой воздействия и собственной частотой системы.  [c.120]

Рассмотрим произвольную конфигурацию упругой системы с сосредоточенными грузами, имеющей п степеней свободы. Эта конфигурация может соответствовать деформированному состоянию от действия произвольной системы внешних сил, может быть некоторой мгновенной конфигурацией, принимаемой системой в процессе движения, вызванного любыми силами при произвольных начальных условиях. Задать такую конфигурацию — это значит задать п перемещений Дц Яг,. .., Яп- Эти величины мы будем называть координатами системы. По определению п координат системы произвольны и независимы между собой. Но для того чтобы задать положение системы, существуют и другие возможности, любые п чисел, однозначно определяющих конфигурацию, могут быть приняты за координаты. В частности, за координаты можно принять произвольные линейные комбинации из величин а , лишь бы они были независимы. Предположим, что собственные формы колебаний системы известны. Введем координаты U , соответствующие данной конфигурации, следующим образом  [c.182]

Влияние линейного сопротивления на малые собственные колебания системы с одной степенью свободы  [c.434]

Здесь (jjv — собственные частоты консервативной системы gn — нормированные коэффициенты v-й формы колебаний в точках А и В 3v — безразмерный коэффициент линейного демпфирования на v-й форме колебаний. При р = im, опуская малые величины второго порядка, имеем частотную характеристику объекта  [c.274]

Uj — собственные векторы позиционной линейной системы. Таким образом, описывает свободное колебание системы, а ( — вынужденное колебание.  [c.591]

Подставляя эти значения величин в уравнения Лагранжа (56), получаем линейные дифференциальные уравнения малых собственных колебаний системы с двумя степенями свободы без сопротивления  [c.435]

Линейные системы обладают еще одной важной чертой. Если параметры, определяющие свойства системы (масса тела, коэффициент упругости пружины, коэффициент трения), не зависят от смещения и скорости тела, то, значит, свойства системы не изменяются от того, что в системе происходят какие-либо движения, например собственные колебания. Поэтому внешнее воздействие будет вызывать в линейной системе такой же эффект, как и в случае, когда собственные колебания отсутствуют (на этом основании мы и имели право рассматривать выше процесс установления как наложение собственных и вынужденных колебаний, поскольку речь шла о линейной системе). Точно так же в случае, когда линейная система подвергается одновременно двум воздействиям, каждое из них вызывает такой же эффект, как и в случае, когда другое воздействие отсутствует. Поэтому результирующий эффект двух (или нескольких) воздействий будет представлять собой сумму эффектов, вызываемых каждым воздействием в отдельности. Это уже знакомый нам принцип суперпозиции, который был применен в 108 к статическим состояниям линейной упругой системы. Здесь мы его применяем к динамическим состояниям линейной колебательной системы. Как ясно из сказанного, принцип суперпозиции справедлив только в линейных системах и не соблюдается в нелинейных системах.  [c.615]

Собственная частота / , <в — каждая из частот свободных колебаний линейной колебательной системы.  [c.144]

Координаты 1, I2, In называются главными или нормальными координатами колебательной системы колебание, при котором изменяется лишь одна главная координата, а остальные все время равны нулю, называется главным колебанием. Мы говорим, что в главном колебании соответствующая главная координата возбуждена, а остальные координаты находятся в покое. Как видно из формулы (9.1.14), в г-ж главном колебании координата изменяется по гармоническому закону с периодом 2п рг- Всего имеется п таких периодов, не обязательно различных их называют собственными периодами или периодами свободных колебаний системы. Периоды свободных колебаний являются инвариантами системы и не зависят от лагранжевых координат, выбранных первоначально для описания системы. Главное колебание с наибольшим периодом и, стало быть, с наименьшей частотой, т. е. колебание с наименьшим р, называется основным колебанием. Поскольку q зависят от I линейно, любое колебание может быть представлено как суперпозиция главных колебаний.  [c.142]


Энергетический метод. Энергетический метод основан на том, что при свободных линейных колебаниях систем в условиях отсутствия сопротивления сумма потенциальной и кинетической энергий системы остается неизменной. Если колебания системы происходят в форме стоячих волн, то, рассматривая какую-то из собственных форм колебаний, замечаем, что в положении наибольшего отклонения кинетическая энергия равна нулю, так как скорости колеблющихся масс в этом случае равны нулю при прохождении же системы через нулевое положение нулю равняется потенциальная энергия, так как система в этом положении недеформирована.  [c.238]

Минимизация функционала осуществляется прямым методом — функция, от которой зависит функционал, представляется в виде конечной линейной комбинации координатных функций, удовлетворяющих граничным условиям и принадлежащих полной системе. В указанной линейной комбинации коэффициенты неизвестны. После подстановки этой линейной комбинации в функционал он превращается в функцию коэффициентов. Далее ищется минимум этой функции обычным путем, т. е. приравниваются нулю производные по коэффициентам. Получающиеся при этом уравнения, поскольку функционал является квадратичным, оказываются линейными алгебраическими и в случае свободных колебаний однородными. Условие ненулевого решения отмеченной системы уравнений — равенство нулю ее определителя и представляет собой уравнение частот корнями его являются собственные частоты системы. После отыскания частот обычным путем находятся собственные векторы матрицы системы уравнений. Эти векторы изображают собой формы свободных колебаний.  [c.246]

Результаты проведенных исследований позволяют сделать следующие выводы относительно последовательности решения прикладной задачи проектирования линейной колебательной системы составляется точное математическое описание системы (модель), затем методами декомпозиции эта система по ряду признаков разбивается на определенное число подсистем меньшей размерности, далее каждая подсистема подвергается анализу на ЭЦВМ или АВМ с использованием методики планируемого эксперимента, в частности метода ПЛП-поиска. На основе такого эксперимента строятся упрощенные математические зависимости. Таким образом, для целого класса колебательных систем, описываемых линейными дифференциальными уравнениями, проектировщик получает зависимости, позволяющие ему сразу принять то или иное проектное решение. В частности, проектировщик может подобрать такие сочетания параметров, при которых собственные частоты системы будут находиться вне требуемого частотного интервала или амплитуды колебаний в этом интервале будут существенно уменьшены,  [c.23]

Линеаризация упругих характеристик соединений превращает ряд нелинейных дифференциальных уравнений математической модели системы в линейные. Линеаризованная модель позволяет при помощи достаточно простых методов оценить спектр собственных частот исследуемой системы и выявить наличие и расположение резонансных режимов в ее эксплуатационном диапазоне. Используя энергетический учет эффекта диссипативных сил, на основе линеаризованной модели можно также оценить уровень установившихся вынужденных колебаний, пиковые нагрузки при переходных режимах и динамическую устойчивость системы в малом [39].  [c.14]

В рассматриваемом случае знаменатель дроби был бы равен нулю. Однако такой результат может указывать на то, что одна из определяемых амплитуд линейно выражается через все другие, в силу чего одно из уравнений системы будет следствием остальных. Допустим, что величина одной из частот собственных колебаний системы, например (01, известна, а соответствующий корень частотного уравнения ш, является простым. Тогда можно утверждать, что хотя бы одно из алгебраических дополнений п—1 порядка определителя системы (71) при подстановке о)1 не обращается в нуль Например, алгебраическое дополнение, полученное вычеркиванием последней строки и последнего столбца определителя (71) [7],  [c.53]

Как известно из общих курсов теории колебаний, собственные частоты линейной двухмассовой системы, подобно рассматривае-  [c.21]

Таким. образом, движение части механизма, расположенной слева от упругого звена, описывается уравнением третьего порядка, вследствие чего во время работы такого механизма при переходных процессах наблюдаются колебания угловой скорости, При совпадении частоты вынужденных колебаний, вызываемых моментом сопротивления М2, с собственными колебаниями системы упругого звена наблюдается явление резонанса угловой скорости. Такое явление может быть исследовано, если момент М2 представляет собой функцию времени. В этом случае уравнение (205) оказывается линейным третьего порядка с правой частью.  [c.183]

Собственные линейные колебания системы являются гармоническими. Амплитуда этих колебаний величина постоянная и определяется начальными условиями. Период колс6а шй тоже величина постоянная, не зависящая от амплитуды и, следовательно, от начальных условий.  [c.432]

Собственные линейные колебания системы являются гармоническими. Амплитуда этих колебаний — величина постоянная и определн-  [c.419]

В качестве модели взаимодействуюш,их нейтральных атомов рассмотрим два линейных диполя, расположенных на одной прямой на большом расстоянии друг от друга. Диполь образован протоном и электроном. Частота колебаний электрона изолированного диполя равна Сйо. Пайти собственные частоты колебаний системы.  [c.187]

Нелинейность деформационных свойств резин проявляется и в области резонансных частот гармонического нагружения, близких к собственной частоте колебаний системы. Нелинейность выражается в аномальной (со скачком) зависимости амплитуды перемещения вынужденных колебаний от частоты со (рис. 3.3.8), наблюдаемой вместо симметричных относительно максимума кривых для линейных систем (см. рис. 1.3.5). Обычно нелинейные соотношения сг — 8 выражены кривыми, вогнутыми к оси напряжений а. При увеличении частоты со амплитуда постепенно возрастает по АВ (см. рис. 3.3.8), достигая максимума <7 при соДалее наб.тю-дается скачок амплитуды, и при увеличении со экспериментальные данные попадают на кривую EF. При уменьшении частоты со ход кривой не совпадает с полученным при увеличении со, а именно кривая проходит по FED до точки D при Wj, а с дальнейшим умень-гаепие>[ со происходит скачок амплитуды из D в 5 и последующее  [c.162]


Анализ влияния линейного сопротивления на собственные малые колебания показывает, что линейное сопротивление не может- сделагь устойчивое положение равновесия неустойчивым. Если в окрестности устойчивого положения равновесия система совершает незатухающие малые колебания, то линейное сопро-гивление превратит их в затухающие или сделает даже затухающими движениями.  [c.443]

Системы, описываемые линейными дифференциальными уравнениями, называют линейными системами, а описываемые нелинейными дифференциальными уравнениями — нелинейными. Таким образом, собственные колебания являются гармоническими только в линейных колеба7ельных системах и только к линейным системам относится все сказанное выше о собственных и вынужденных колебаниях.  [c.615]


Смотреть страницы где упоминается термин Собственные линейные колебания системы : [c.231]    [c.426]    [c.442]    [c.392]    [c.413]    [c.306]    [c.33]   
Смотреть главы в:

Курс теоретической механики  -> Собственные линейные колебания системы



ПОИСК



КОЛЕБАНИЯ В ЛИНЕЙНЫХ СИСТЕМАХ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ Собственные колебания системы с двумя степенями свободы

КОЛЕБАНИЯ В ЛИНЕЙНЫХ СИСТЕМАХ С и СТЕПЕНЯМИ СВОБОДЫ Собственные колебания в консервативных системах

Колебание системы собственное

Колебания линейные

Колебания линейных систем

Колебания собственные

Линейные колебания Собственные колебания одномерных систем

Общие свойства спектров собственных колебаний линейно-упругих систем, обладающих поворотной симметрией Поворотная симметрия

Система линейная

Собственные колебания линейных систем с одной степенью свободы

Собственные колебания систем с линейным затуханием



© 2025 Mash-xxl.info Реклама на сайте