Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рекристаллизация Термическая обработка

Рекристаллизационный отжиг титана и его сплавов проводят при 700—800°С, что значительно превосходит температуру рекристаллизации (500°С). Эта температура достаточна для быстрого устранения наклепа. Фазовые превращения, рассмотренные ранее, позволяют проводить различные операции закалки и отпуска (старения). Хотя при этом значительного изменения свойств не происходит как при термической обработке стали, тем не менее определенные изменения наблюдаются, и в последнее время при работе сплавов предусматривается воз-  [c.517]


Для полного снятия наклепа металл нагревают до более высоких температур, чтобы обеспечить высокую скорость рекристаллизации и полноту ее протекания. Такая термическая обработка получила название рекристаллизационного отжига.  [c.56]

Жаропрочность сталей и сплавов, характеризуемая и о , зависит от природы и свойств твердого раствора основы температур плавления, рекристаллизации и атомных связей, соответствующих определенному типу кристаллической решетки основы легирующих элементов термической обработки величины зерна и характера обработки поверхности деталей.  [c.201]

Снятие напряжений термической обработкой. Для латуни Zn—Си с 30 % Zn рекомендуется нагрев при 350 °С в течение 1 ч, однако при этом происходит рекристаллизация и некоторое уменьшение прочности сплава. По некоторым данным, термиче-  [c.338]

Подобный метод травления, позволяющий различать деформи-ованные и рекристаллизованные зерна, может быть весьма эффек-ивно использован для изучения кинетики рекристаллизации при орячей деформации и других стареющих сплавов при соответствую-1ем подборе режимов травления и термической обработки.  [c.399]

Пластическая деформация, как правило, повышает р металлов в результате искажения кристаллической решетки. При рекристаллизации путем термической обработки (отжига) р может быть вновь снижено до первоначального значения.  [c.14]

Диффузией называется закономерное перемещение атомов элемента в кристаллической решетке металла. Процессы диффузии лежат в основе многих превращений, наблюдающихся в металлах и сплавах (рост зерна, полиморфное превращение, отдых и рекристаллизация, гомогенизирующая термическая обработка, дисперсионное твердение, химико-термическая обработка, спекание металлических порошков, сварка давлением и др.).  [c.52]

Термическая обработка проводникового алюминия для снижения его сопротивления обычно не применяется. Холодная обработка алюминия мало снижает его электропроводность. При обжатии до 95—98% электропроводность уменьшается не более чем на 1,2% электропроводности стандартной меди. Чистый алюминий (99,97%) имеет предел прочности при растяжении около 50 Мн/м (5 кгс/мм ). Примеси, обычно содержащиеся в проводниковом алюминии, увеличивают его прочность на разрыв. При содержании примесей около 0,5%, предел прочности при растяжении составляет 80—90 Мн/м (8—9 кгс/мм ). Наклепом предел прочности при растяжении может быть повышен до 250 Мн/м (25 кгс/мм ). Но эта прочность может быть уменьшена при нагреве проводов токами значительной величины. Температура рекристаллизации обработанного проводникового алюминия находится в пределах 200—300° С.  [c.241]


Для повышения жаропрочных свойств применяется так называемая механико-термическая обработка (МТО), которая, в отличие от ТМО, не связана с полиморфным превращением наклепанного материала. МТО заключается в создании в материале полигональной структуры путем дефорМ Ирования и последующей стабилизации полученного структурного состояния при температурах, не превыщающих температуру начала рекристаллизации.  [c.10]

Результаты рассмотренных выше опытов послужили основой для разработки метода повышения жаропрочных свойств широкого круга металлов и сплавов путем механико-термической обработки. Этот метод заключается в следующем [56]. После стандартной термической обработки металлы и сплавы подвергают дополнительному деформированию (растяжению, прокатке и др.) до критической степени деформации, составляющей 0,2—3%, при температуре, не превышающей температуры начала рекристаллизации, а затем выдерживают при этой температуре в течение 20—50 час. без нагрузки.  [c.32]

Влияние термической обработки титановых сплавов на их усталостную прочность связано с изменением структуры и прочности [ 36] (см. рис. 93). Выбрав оптимальную термическую обработку, можно несколько повысить предел выносливости, Для чистых й псевдо-о-сплавов такой обработкой является наклеп (при температурах ниже рекристаллизации) и отжиг при температурах ниже перехода а + р)- 13 (но, естественно, выше температуры рекристаллизации). Охлаждение после отжига предпочтительнее ускоренное, в воде или на воздухе (при небольших сечениях). Такая обработка способствует образованию мелкозернистой глобулярной структуры, наиболее выгодной для получении высокого предела выносливости о -сплавов.  [c.154]

Отрицательное влияние предварительного наклепа на жаропрочные свойства стали устраняется термической обработкой, основной целью которой является рекристаллизация наклепанной матрицы. Поэтому гнутые участки труб пароперегрева-  [c.31]

Начальную стадию процесса рекристаллизации и его дальнейшее развитие определяли по появлению первых интерференционных пятен и их последующему изменению на линиях рентгенограмм, снятых с поверхности образцов, прошедших термическую обработку в вакууме.  [c.160]

Узкий интервал температур ковки (1200—1000 ) таких сплавов при высокой температуре начала рекристаллизации и малой ее скорости при горячей обработке выдвинули задачу разработки соответствующих термомеханических режимов ковки и штамповки. Кузнечная обработка сплавов сопровождается последующей термической обработкой, нагревом под закалку при высоких температурах около 1200° и большими выдержками при этой температуре.  [c.110]

При термической обработке стали, предварительно деформированной, протекают процессы возврата и рекристаллизации, приводящие к снижению прочностных и повышению пластических свойств, а также к изменению микроструктуры при сохранении структурных составляющих.  [c.73]

Фиг. 86. Зависимость Ок от характера термической обработки мягкой стали (0,05 /о С) Т — закалка 950° С в воде, отпуск 650° С (мелкозернистое строение) 2 — после горячей прокатки 3 — крупнозернистое строение, вызванное рекристаллизацией 4 — после отжига с перегревом при 1250° и медленного охлаждения 5 — после прокатки при 200°. Фиг. 86. Зависимость Ок от характера <a href="/info/6831">термической обработки</a> <a href="/info/311079">мягкой стали</a> (0,05 /о С) Т — закалка 950° С в воде, отпуск 650° С (мелкозернистое строение) 2 — после <a href="/info/274034">горячей прокатки</a> 3 — крупнозернистое строение, вызванное рекристаллизацией 4 — после отжига с перегревом при 1250° и медленного охлаждения 5 — после прокатки при 200°.
Полуфабрикаты должны поставляться, как правило, в термически обработанном состоянии. Поставка полуфабрикатов без термической обработки допускается в следующих случаях 1) если механические и технологические характеристики металла, установленные в НТД, сохраняются после изготовления полуфабриката (например, методом проката, когда температура окончания операции формообразования не ниже температуры рекристаллизации — для углеродистой стали 750—700 °С) 2) если на предприятиях — изготовителях оборудования полуфабрикат подвергается горячему формообразованию с последующей термической обработкой или ее совмещением с изготовлением. При поставке полуфабрикатов без термической обработки поставщик полуфабрикатов обеспечивает контроль свойств на термически обработанных образцах. Допустимость использования полуфабрикатов без термической обработки должна быть подтверждена головной организацией по материалам и технологии, если это не указано в НТД на изделие.  [c.66]


Термическая обработка (рекристаллизация) изделий производится в электропечах сопротивления при 2300—2350°С в восстановительной атмосфере. Замер температуры во время рекристаллизации производится оптическим пирометром.  [c.108]

Метод внутреннего трения дает оценку качественной стороны дефектов структуры — характера их подвижности по решетке под действием температуры и внешних напряжений. Он является одним из эффективных неразрушающих методов оценки технологических и эксплуатационных показателей качества вольфрамовых проволок в определении температуры начала первичной и вторичной рекристаллизации, уровня жаропрочности и склонности к ползучести, уровня термоциклической прочности образцов, позволяет установить оптимальные режимы термической обработки.  [c.34]

Массовая рекристаллизация наблюдается при температуре около 650 °С, что обеспечивает возможность термической обработки никелевых деталей при 800—900 °С.  [c.64]

Термическая обработка титановых сплавов. Титановые сплавы в зависимости от их состава и назначения можно подвергать отжигу, закалке, старению и химико-термической обработке (азотирование, цементация и др.), Титап и а-снлавы титана не упрочняются термической обработкой, их подвергают только рекристаллизационному отжигу. Температура отжига должна быть вьнпе температуры рекристаллизации, но ие превьииать температуры превращения а Р —> Р, так как в Р-области происходит сильный рост зерна. Чаще рекристал-лизационпый (простой) отжиг а- и а + р-сплавов проводят при 650—850 °С. Для а 4- Р-силавов нередко применяют изотермический отжиг, который включает нагрев до 850—950 °С (в зависимости от состава сплава) с последующим охлаждением на воздухе до 550— 650 °С, выдержку при этой температуре и охлаждение на воздухе. Такая обработка обеспечивает более высокую пластичность и наибольшую термическую стабильность структуры.  [c.316]

К недостаткам обычных диаграмм рекристаллизации следует отнести и то, что при этом не всегда используется истинная деформация. Часто при построении диаграмм рекристаллизации используют образцы в виде плоских заготовок или цилиндров. После прокатки (осадки) и термической обработки величина зерна определяется в среднем по высоте сечения образца (в месте пересечения диагоналей). Относительное обжатие определяют по формуле е= = Ло — hi/ho-100%, а истинную деформацию e=ln /ti/Ao), где ho и /г, — исходная и конечная высота заготовки. Следует учитьгаать, что при больших деформациях значения истинной деформаций и относительного обжатия существенно различаются, а при малых степенях деформации (меньше 10%) эти значения практически совпадают.  [c.355]

Термическая обработка, не сопровождающаяся фазовыми превращениями, встречается при обработке чистых металлов или однофазных сплавов, наблюдающихся в системах с неограниченной растворимостью компонентов в твердом состоянии (см. рис. 70), в системах сплавов с ограниченной растворимостью компонентов при концентрациях последних, определяемых отрезками А—F и Б—G (см. рис. 72), а также в системах сплавов, имеющих ЭБтектондную структуру (см. рис. 77). Термическая обработка при нагреве последних ниже критической точки Асх для всех указанных случаев, состоящая из нагрева сплавов, исключающих фазовые превращения, с последующим медленным охлаждением (обычно с печью) называется отжигом первого рода. Отжиг первого рода применяют для устранения наклепа и волокнистой структуры металлов и сплавов ранее прошедщих холодную пластическую деформацию. Таким образом, при отжиге первого рода в зависимости от температуры нагрева могут происходить процессы возврата и рекристаллизации, ведущие к снятию напряжений и к разупрочнению.  [c.106]

Нельзя согласиться с мнением автора [42] о наличии у сплавов эквикогезивной температуры, выше которой прочность границ зерен меньше прочности самих зерен. Высокотемпературное разрушение по границам зерен наблюдается только при загрязнении их примесями, например свинцом, образцы чистой латуни разрываются по телу зерен (см. рис. 9) при ф= 100 % [43]. Однако у сплавов закономерности усложнены дополнительным влиянием легирования, приводящего к искажению кристаллической решетки, повышению деформационного упрочнения, температуры рекристаллизации и пр. Еще большие изменения происходят при образовании других фаз, появлении способности к закалке и другим видам термической обработки. Существенное влияние оказывает изменение растворимости легирующего элемента с температурой.  [c.177]

Для режимов механической обработки, характеризующихся большим силовым воздействием на поверхностные слои металла и сравнительно низкой температурой деформации его (упрочняющая обработка роликом), процесс рекристаллизации их усиливается. Так, после двухчасовой выдержки при 800° С наблюдается рекристаллизация для всех режимов упрочняющей обработки, но степень развития этого процесса различна. Если для образцов после обкатки с усилием Р — 100 кгс наблюдается начальная стадия рекристаллизации (только на передних линиях) — обнаруживаются очень мелкие точки, то для образцов, обкатанных роликом с усилием Р = 500 и Р = 1000 кгс, рекристаллизация имеет место на всех линиях рентгенограмм. После вакуумного отжига при 875° С с выдержкой 25 ч с достариванием при 800° С в течение 8 ч образцов, обработанных шлифованием, на передних линиях рентгенограмм, снятых под углом 25°, четко видно начало рекристаллизационного процесса — появление первых интерференционных пятен в виде точечных уколов. На образцах с поверхностным упрочнением обкаткой роликом после аналогичной термической обработки наблюдается значительная рекристалли-  [c.161]


В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]

Горячая обработка давлением при пониженных температурах вредна тем, что способствует появлению в металле полугорячего наклепа, а при последующей термической обработке разнозернистости или грубозернистости. Это связано с деформацией сплава в области критических степеней деформации и последующим усиленным ростом зерна, т. е. рекристаллизацией металла. Начало рекристаллизации сплавов различно и зависит как от легирования сплава, так и условий предшествующей деформации сплава в холодном или полугорячем состоянии (термомеханической обработки).  [c.226]

Термическая обработка этих <я-алей применительно к упругим элементам отличается рядом оеобённостей. После закалки сталь должна -иметь мелкозернистое строение при минимальном коли честве остаточного аустенита. Первое условие ревизуется путем регулирования температуры нагрева при закалке или применением 2—3-кратной закалки, позволяющей повысить величину фазового наклепа и тем самым увеличит , число центров рекристаллизации, или двухкратной закалкой с промежуточным нагревом при 650° С.  [c.36]

Эти работы проводились на трех жаропрочных сплавах ЭИ437Б ЭИ787 ЭИ696. Нами было выявлено, что нормальная ВТМО и ВТМО с частичной рекристаллизацией одинаково влияют на механические свойства и жаропрочность повышают прочность и пластичность по сравнению со стандартным режимом термической обработки, повышают длительную прочность при умеренной температуре 550° С и понижают ее при 750° С. Рентгенограммами и замерами величины истинного физического уширения установлено, что после нормальной ВТМО и ВТМО с частичной рекристаллизацией внутренняя структура материала характеризуется большим дроблением блоков и неравновесностью, чем после стандартной термической обработки. Таким образом, проведенными экспериментами было установлено, что в области умеренных температур, когда вообще эффективно упрочнение ВТМО с частичной  [c.35]

Для повышения предела длительной прочности стали стремятся, чтобы твердый раствор содержал достаточное количество элементов, повышающих порог рекристаллизации. В процессе эксплуатации при высоких температурах происходит перемещение этих элементов из твердого раствора в карбиды и интерметлллические соединения. При рациональном легировании и соответствующих режимах термической обработки стремятся замедлить обеднение твердого раствора (феррита или аустенита).  [c.86]

При сварке холоднокатаных и холоднотянутых труб, не подвергавшихся последующей термической обработке, происходит оилшое разупрочнение металла вследствие рекристаллизации. Иногда при этом наблюдается сильное снижение пластичности. Известны случаи, когда в результате стыковой сварки наклепанных труб из стали 12Х2МФБ ударная вязкость в стыке снижалась до 0,5—1 кГ-м1см . Ударная вязкость этих же труб в сварном стыке после нормализации составляла около 15 кГ м см .  [c.192]

В. С. Гонткевичем [16] было исследовано влияние термической обработки разных марок лопаточных сталей на рассеяния энергии колебаний. Были взяты образцы в исходном состоянии и нагреты до 300 С (выдержка 3—4 ч) для снятия искажений решетки зерен. Затем образцы нагревались до 600°С для выявления влияния рекристаллизации. При нагреве до 100—130°С в течение 30 мин демпфирующая способность стали не изменилась. Минимальную демпфирующую способность образцы имели после нагрева до 300°С, когда искажения решетки зерен были сняты. Затем под влиянием рекристаллизации происходило некоторое увеличение демпфирующих свойств, но после хранения образцов при нормальной температуре в течение года их демпфирующая способность снизилась настолько же, на сколько она снизилась при нагреве до 300°С. Исследования позволили В. С. Гоиткевичу [16] сделать следующие выводы  [c.120]

Все три образца стали после обычной термической обработки в виде закалки и отпуска на 550° С показали низкие значения ударной вязкости, неудовлетворительные для практических целей. После ВТМО значения ударной вязкости повысились до допустимых для стали данных составов. Благоприятное влияние оказало подстуживание перегретых образцов и проведение деформации при температурах 900— 950° С, нормальных для ВТМО этих сталей. Характерны в этом отношении данные, полученные для стали 37ХНЗА. Деформация при завышенной температуре (1150°С), благоприятной для развития процессов диффузии дислокаций и рекристаллизации, хотя и заметно повышает ударную вязкость по сравнению с обычной закалкой, однако не обеспечивает оптимальных свойств.  [c.47]

В основу теории термической обработки деформированного металла положено описание полиморфных. превращений, отдыха , полиго-низации и рекристаллизации. Для объяснения этих явлений предложен ряд гипотез, одна из которых - необходимость возникновения зародышей новых зерен при рекристаллизации и зародышей новой фазы при полиморфных и фазовых превращениях. Размер их составляет несколько межатомных расстояний, а образуются они синхронным перескоком атомов в новые равновесные положения.  [c.119]

Влияние термической обработки титановых сплавов на их усталостную прочность находится в тесной связи с изменением структуры и прочности (см. рис. 64). Тем не менее, выбором оптимальной термической обработки можно несколько повышать предел усталости. Для чистых и бетированных а-сплавов такой оптимальной обработкой является наклеп (при температурах ниже рекристаллизации) и отжиг при температурах ниже точек превращения а + р р или а а + р (но, естественно, выше температуры рекристаллизации). Охлаждение после отжига лучше иметь ускоренное в воде или на воздухе. Такая обработка должна привести к образованию мелкозернистой глобулярной структуры, наиболее выгодной для получения высоких значений предела усталости для а-сплавов титана.  [c.148]


Для ламп, работающих в условиях сильных механических воздействий (удары, тряска, вибрация), термическая обработка спиралей осуществляется при более высокой темперауре 2300—2400°С (происходит рекристаллизация вольфрама). Рекристаллизацию рекомендуется производить только у спиралей, изготовленных из вольфрама марки ВА. Они обладают не только повышенной прочностью, но и хорошей формоустойчивостью.  [c.289]

Итак, в результате термической обработки из осадка уда-,- яется водород, а вследствие выдержки при этой температуре — происходит рекристаллизация осадка.  [c.106]


Смотреть страницы где упоминается термин Рекристаллизация Термическая обработка : [c.192]    [c.513]    [c.384]    [c.391]    [c.249]    [c.156]    [c.73]    [c.37]    [c.301]    [c.385]    [c.10]    [c.136]    [c.391]   
Машиностроение Энциклопедический справочник Раздел 3 Том 7 (1949) -- [ c.556 ]



ПОИСК



Рекристаллизация

Рекристаллизация обработки



© 2025 Mash-xxl.info Реклама на сайте