Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Непрямые действия

Прибор дает пример широко используемой индикаторной системы ставили )ации (стабилизатор непрямого действия), где гироскоп играет роль чувствительного элемента, регистрирующего отклонение объекта от заданного положения и передающего соответствующий сигнал двигателю, который и осуществляет стабилизацию, возвращая объект в исходное положение (например, с помощью рулей).  [c.339]

Возникновение гироскопических реакций при изменении направления оси вращения используется в различных приборах. Среди них можно назвать гироскопические стабилизаторы прямого действия, применяемые для уменьшения качки морских кораблей, стабилизаторы непрямого действия в торпедах и др. ).  [c.445]


В приборе Обри гироскоп применяется как стабилизатор непрямого действия. Иными словами, свойство оси гироскопа используется для передачи движения устройствам, осуществляю  [c.374]

В свою очередь регуляторы бывают прямого и непрямого действия. К регуляторам прямого действия относят те, у которых перемещение регулирующего элемента осуществляется за счет энергии регулируемого объекта, т. е. применительно к гидроаппарату — за счет энергии рабочей жидкости. Как правило, регуляторы этого типа требуют небольшой мощности для управления регулирующим элементом.  [c.181]

Если для перемещения регулирующего элемента необходима значительная мощность (сотни ватт и более), применяют регуляторы непрямого действия. У них энергия регулируемой среды используется только для управления гидродвигателем, а он уже воздействует на регулирующий элемент. При этом мощность сигнала от регулируемой среды незначительна, так как она воздействует только на чувствительный элемент регулятора. Импульс от чувствительного элемента подается на гидроусилитель, который усиливает сигнал по мощности до значения, необходимого для управления регулирующим элементом.  [c.181]

Таким образом, регулятор непрямого действия состоит по крайней мере из трех основных узлов чувствительного элемента, гидроусилителя и гидродвигателя.  [c.181]

Как упоминалось выше (см. 12.1), регулятор непрямого действия состоит из чувствительного элемента, гидроусилителя и гидродвигателя. Принято считать, что основным элементом является гидроусилитель. Поэтому регуляторы непрямого действия обычно называют по типу гидроусилителя. Последние бывают золотниковые, дроссельные и струйные.  [c.272]

Следует отметить, что регуляторы непрямого действия применяются для регулирования сложных объектов. При этом для улучшения качества регулирования в системах применяют обратные связи. Под последней понимают связь между последующим и предыдущим (по направлению воздействия) элементами системы автоматического регулирования. Связь между чувствительным элементом и исполнительным механизмом называют главной обратной связью. Благодаря обратной связи в системе автоматического регулирования выходное звено оказывает обратное воздействие на входное, чтобы не произошло перерегулирования объекта.  [c.272]

Как уже указывалось выше, в насосах 323 и 333 применено независимое регулирование потоков. Каждый качающий узел 4 имеет автономный механизм изменения положения блока цилиндров, выполненный в виде дифференциального плунжера 5. Поршневая и штоковая полости этого плунжера соединены каналами с напорной гидролинией 10 через следящий золотник 4 непрерывного действия. Применение регулятора непрямого действия позволило осуществить раздельное регулирование потоков.  [c.184]


J. Напорная, с обратным кла- Для гидросистем, где требу-паном и предохранительным ется дистанционное управ-клапаном непрямого действия ление клапаном  [c.216]

Преимущество клапанов прямого действия состоит в простоте конструкции. К недостаткам можно отнести жесткие удары клапана (запирающего элемента) о седло, что вызывает повышенный шум и вибрацию в гидроприводе. В клапанах непрямого действия этот недостаток исключен, так как в нем отсутствует жесткая пружина и давление срабатывания поддерживается практически постоянным.  [c.235]

Редукционные клапаны предназначены для создания постоянного давления, сниженного по сравнению с давлением в основной напорной линии. Редукционные клапаны подразделяются на клапаны прямого и непрямого действия, последние получили наибольшее распространение в машиностроении (рис. 83). Принцип работы клапана непрямого действия заключается в следующем. Поток жидкости от насоса Н поступает к основному нормально открытому регулирующему органу и через него к потребителю в линию А. При работе клапана через дроссельное отверстие и вспомогательный регулирующий орган С регулируемой пружиной постоянно  [c.239]

Гидроклапан непрямого действия — гидроклапан, у которого величина открытия рабочего проходного сечения изменяется в результате воздействия потока жидкости на вспомогательный запорно-регулирую-щий элемент.  [c.353]

РЕГУЛЯТОРЫ НЕПРЯМОГО ДЕЙСТВИЯ  [c.202]

В чем отличие регуляторов скорости прямого и непрямого действия  [c.398]

По принципу действия предохранительные клапаны различают на клапаны прямого действия и клапаны непрямого действия.  [c.106]

У клапанов прямого действия величина проходного окна для слива рабочей жидкости изменяется от воздействия только рабочей жидкости, в то время как у клапанов непрямого действия величина проходного окна при срабатывании изменяется от дополнительных вспомогательных устройств.  [c.106]

На двигателях большой мощности (тепловозных, судовых или стационарных) устанавливаются регуляторы непрямого действия (рис. 5.23). В их конструкцию входит чувствительный элемент частоты вращения, состоящий из грузов 1, пружины 2 и муфты 3, и усилительный элемент с поршнями 17 и 19, гидроцилиндра, управляемыми гидрораспределителем 6, выполненным как одно целое с муфтой 3.  [c.252]

Регуляторы непрямого действия обязательно имеют стабилизирующие элементы в виде жестких или гибких обратных связей. Регулятор РН-30 оборудован гибкой обратной связью, обеспечивающей постоянство частоты вращения при всех нагрузках от режима холостого хода до номинального ЬК (см. рис. 5.20).  [c.253]

Схема автоматического регулятора непрямого действия РН-30  [c.254]

На рис. 88, б показан центробежный регулятор непрямого действия, который применяется в том случае, когда сила, передаваемая от муфты регулятора 3, недостаточна для того, чтобы плавно перемещать заслонку. Для перемещения заслонки в этом случае применяется вспомогательный двигатель (серводвигатель) в виде гидроцилиндра 6, а муфта регулятора 3 перемещает (с небольшим усилием) шток золотника 7, который служит распределителем, переключающим поток жидкости в ту или другую полость гидроцилиндра. При установившемся движении оба окна (отверстия) в корпусе золотника перекрыты, и поршень гидроцилиндра неподвижен. При увеличении скорости вращения вала двигателя муфта регулятора 3 поднимается, жидкость поступает в нижнюю полость гидроцилиндра, поршень идет вверх, а заслонка опускается, восстанавливая равновесие между силами движущими и силами сопротивления.  [c.310]

На рис. 88,2 показан центробежный регулятор непрямого действия с упругой обратной связью (изодромный регулятор). Применение этого регулятора обеспечивает получение после процесса регулирования той же самой угловой скорости вала двигателя, что и в начале процесса регулирования. С этой целью в обратную связь введен дополнительный гидроци-линдр 8 с отверстиями в поршне, через которые перетекает  [c.310]

Чувствительный элемент системы регулирования угловой скорости вала машины может быть выполнен не только как центробежный маятник. К настоящему времени разработано много других видов чувствительных элементов. Па рис. 89 показана схема регулятора непрямого действия с тахогенератором /, т. е. электрическим генератором постоянного тока, который дает напряжение и, пропорциональное угловой скорости вала регулируемой машины. Одна клемма тахогенератора соединена с усилителем 2, а другая с щеткой потенциометра 3, находящегося под действием напряжения постоянного тока электрической сети. В результате такого соединения в усилитель 2 подается разность напряжений U — Un. Щетка потенциометра устанавливается так, чтобы напряжение U было равно U при заданном значении скорости установившегося движения. Тогда разность напряжений U — равна нулю, и шток электромагнита 4 остается неподвижным.  [c.311]


Начиная с 1957 г., предметом исследования стали также системы с переменной структурой, которые описываются уравнениями с коэффициентами, изменяющимися скачками, и позволяют улучшить качество процесса регулирования. Примером может служить задача о синтезе систем, у которых после любого начального отклонения за один размах достигается поверхность скольжения в фазовом пространстве системы и далее равновесие восстанавливается при помощи скользящего движения. Интерес к изучению такого рода систем возник еще в 1950 г., когда на примере классического регулятора непрямого действия был показан естественный способ доопределения уравнений с целью описать скользящие движения. В следующей работе были установлены общие условия возникновения скользящих движений и был обнаружен новый тип скольжений, возникающих в том случае, когда в передаточной функции системы степени числителя и знаменателя равны.  [c.269]

На рис. XIП.30, б приведена схема для регулирования температуры среды в объекте ОР, которая обеспечивает непрерывное регулирование температуры. Чувствительным элементом является термопара 1. При изменении температуры слабый электрический сигнал от термопары поступает в элемент сравнения ЭС, где сравнивается напряжение поступившего сигнала с напряжением сигнала при заданной температуре и получается сигнал рассогласования. Этот сигнал усиливается в усилителе У и поступает в исполнительный механизм ЯЛ1, который переводит движок 2 реостата 5, регулируя ток в нагревательном элементе 4 печи. В этой системе регулирующий орган 2 перемещается ИМ, использующим энергию от внешнего источника. Такие регуляторы являются автоматическими непрямого действия.  [c.281]

Расчет клапанов непрямого действия выполняют по ранее приведенным уравнениям. Прн отол составляют системы уравиепий для управляющего и основного клапанов п решают совместно с урав-пенпо.м npony Kisoii способпост[1 дросселя.  [c.373]

Для защиты механизмов и элементов гидропривода от перегрузок устанавливают предохранительные клапаны, ограничивающие в системе превыщение давления рабочей жидкости. По воздействию потока рабочей жидкости на запорно-регулиру-ющий элемент предохранительные клапаны бывают прямого действия (когда давление жидкости действует непосредственно на запорный элемент) и непрямого действия (когда давление жидкости действует на вспомогательный клапан, управляющий перемещением запорного элемента).  [c.32]

Клапанная коробка 10 предназначена для управления линией подпитки. Обратные клапаны коробки поочередно соединяют сливную линию гидросистемы привода хода с линией подпитки. Избыток жидкости, поступающей из насоса 4, сливается через охладитель 7 (радиатор) в бак. Предохранительные клапаны коробки 10 защищают гидросистему от перегрузок путем перепуска части жидкости из напорной линии в сливную. Нерегулируемый насос 4 создает устойчивый поток подпитки линии хода катка. Для раздельного управления рулевыми гидроцилиндрами 13 использован двухзолотниковый четырехпозиционный распределитель 14, в который встроен предохранительный клапан непрямого действия. Нерегулируемый насос 3 создает поток жидкости для гидроусилителя 8 и рулевых гидроцилиндров 13. С целью ограничения потока жидкости, поступающей в рулевое управление, применен дроссель 17.  [c.110]

Предохранительные клапаны по конструкции и принципу действия подразделяются на оапаны прямого действия (одноступенчатые) и клапаны непрямого действия (двухступенчатые). В клапанах прямого действия давление жидкости непосредственно воздействует на запирающий элемент, который сжимает жесткую пружину и открывает канал, соединяющий напорную и сливную линии. В клапанах непрямого действия сначала открывается маленький чувствительный элемент прямого действия, который направляет небольшую часть потока жидкости на золотник (плунжер), открывающий проходной канал основному потоку жидкости.  [c.235]

Регулятором непрямого действия называют систему, в которой имеется усилительно-преобразующее устройство, питаемое извне от добавочного источника энергии. Такой регулятор применяют, когда мощность его недостаточна для непосредственного воздействия на регулирующий орган. Например, регулятор скорости теплового двигателя 1 (рис. 12.13), чувствительный элемент 2 которого перемещает золотник 3, а не непосредственно регулирующий орган. Золотник впускает рабочую жидкость в ту или иную полость гидравлического сервомотора 4, перемещающего регулирующий орган—задвижку 5. Золотник и гидропривод являются усилительным устройством. Главным внешним возмущающим воздейст-  [c.392]

Механизмы регулирования и управления обеспечивают протекание технологического процесса с заданной закономерностью и степенью точности. Регулированию подвергаются такие параметры, как скорость, усилие (давление), температура, влажность и т. п. Механизм регулирования (регулятор) может состоять либо из двух элементов — чувствительного и реагирующего (исполнительного), либо из трех — чувствительного, усилительного и реагирующего. Первый из них является регулятором прямого действия, в котором реагирующий орган непосредственно связан с чувствительным элементом и находится под воздействием регулируемого параметра (центрсбежный регулятор прямого действия, рис. 365), второй — регулятором непрямого действия, в котором чувствительный элемент и собственно регулирующий орган соединены усилительным управляющим элементом, который регулирует доступ энергии от постоянного источника в двигатель исполнительного механизма (центробежный регулятор непрямого действия).  [c.426]


На рис. 88,0 показан центробежный регулятор непрямого действия с жесткой обратной связью, под которой понимается рычажная система 4, соединяющая шток золотника 7 и поршень гидроцплиндра 6. Благодаря этой связи уменьшаются колебания поршня гидроцилиндра и штока золотника при переходе через среднее положение.  [c.310]

Радиус круга трения 120 Рауса критерий 182—184 Рауса — Феррерса уравнение 154 Регулировочные характеристики 297 Регулятор непрямого действия 310  [c.573]

В восстановительный период развитие теории автоматического регулирования характеризуется продолжением деятельности в этой области тех небольших научно-исследовательских центров, которые сложились в высшей технической школе еще до 1917 г. Одну из первых советских работ по теории регулирования выполнил в Ленинградском технологическом институте в 1922 г. И. Н. Вознесенский (1887—1946 гг.) на тему О регуляторах непрямого действия . В 1924 г. К. Э. Рерих в Днепропетровском горном институте заканчивает свое обстоятельное подкрепленное многочисленными экспериментами исследование о влиянии трения на процесс регулирования. Затем им были опубликованы результаты нового исследования о влиянии быстроходности двигателя на прерывный процесс регулирования центробежных регуляторов. В Днепропетровском горном институте продол кал свою работу по регулированию Я. И. Грдина, который в 1927 г. в работе К вопросу о динамической устойчивости центробежных регуляторов проанализировал ряд задач динамической устойчивости при непрерывном регулировании, а три года спустя рассмотрел этот же вопрос при прерывистом регулировании.  [c.237]

Перечисленные выше условия мажорирования характерны для типовых САРС с регуляторами прямого и непрямого действия, включающих в себя центробежный измеритель угловой скорости (в простейшем случае таходатчик), одно- или двухкаскадную систему усиления и, в общем случае, амплитудно-импульсные звенья [21]. Для конкретных САРС указанные условия могут быть дополнены с учетом особенностей отдельных звеньев управляющего устройства.  [c.141]

Для САРС с регулятором непрямого действия, имеющим одни каскад усиления, = W W, и уравнение (9.2) можно представить в следующей форме  [c.144]


Смотреть страницы где упоминается термин Непрямые действия : [c.372]    [c.373]    [c.640]    [c.201]    [c.297]    [c.96]    [c.309]    [c.50]    [c.398]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Авторегуляторы непрямого действия

Гидроклапаны непрямого действия

Испытания регуляторов непрямого действия

Клапан непрямого действия

Котлы непрямого действия и с неводяными теплоносителями

Мишени непрямого действия конструкция DT-капсулы

Переливные и предохранительные клапаны непрямого действия

Принципиальные дизелей тепловозных центробежные непрямого действия

Расходомеры непрямого действия

Расчет центробежных регуляторов непрямого действия

Регулятор астатический непрямого действия

Регулятор давления непрямого действия

Регулятор непрямого действия

Регулятор непрямого действия идеальный

Регулятор подачи топлива непрямого действия

Регуляторы непрямого действия с жесткой или силовой обратной связью

Регуляторы непрямого действия с изодромной обратной связью

Регуляторы прямого действия . Регуляторы непрямого действия

Системы управления непрямого действия

Системы управления от копиров непрямого действия

Стабилизатор непрямого действия

Статический расчет регулятора непрямого действия

Угловая Регуляторы непрямого действия

Центробежные регуляторы непрямого действия

Элементы центробежных регуляторов непрямого действия



© 2025 Mash-xxl.info Реклама на сайте