Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкости тепловое расширение

Коэффициент теплоотдачи а зависит от физических свойств жидкости и характера ее движения. Различают естественное и вынужденное движение (конвекцию) жидкости. Вынужденное движение создается внешним источником (насосом, вентилятором, ветром). Естественная конвекция возникает за счет теплового расширения жидкости, нагретой около теплоотдающей поверхности (рис. 9.1) в самом процессе теплообмена. Она будет тем сильнее, чем больше разность температур A/ = f — и температурный коэффициент объемного расширения  [c.78]


Мы будем ниже предполагать, что длина распространяющейся в жидкости волны мала по сравнению с расстояниями, на которых поле тяжести вызывает заметное изменение плотности ). Самую жидкость мы будем при этом рассматривать как несжимаемую. Это значит, что можно пренебречь изменением ее плотности, связанным с изменением давления в волне. Изменением же плотности, связанным с тепловым расширением, отнюдь нельзя пренебречь, так как именно оно определяет собой все явление.  [c.63]

Громадное большинство оптически изотропных тел обладает статистической изотропией изотропия таких тел есть результат усреднения, обусловленного хаотическим расположением составляющих их молекул. Отдельные молекулы или группы молекул могут быть анизотропны, но эта. микроскопическая анизотропия в среднем сглаживается случайным взаимным расположением отдельных групп, и макроскопически среда остается изотропной. Но если какое-либо внешнее воздействие дает достаточно ясно выраженное преимущественное направление, то возможна перегруппировка анизотропных элементов, приводящая к макроскопическому проявлению анизотропии. Не исключена возможность и того, что достаточно сильные внешние воздействия могут деформировать даже вначале изотропные элементы, создавая и микроскопическую анизотропию, первоначально отсутствующую. По-види-мому, подобный случай имеет место при одностороннем сжатии каменной соли или сильвина (см. 142.) Достаточные внешние воздействия могут проявляться и при механических деформациях, вызываемых обычным давлением или возникающих при неравномерном нагревании (тепловое расширение и закалка), или осуществляться электрическими и магнитными полями, налагаемыми извне. Известны даже случаи, когда очень слабые воздействия, проявляющиеся при течении жидкостей или пластических тел с сильно анизотропными элементами, оказываются достаточными для создания искусственной анизотропии.  [c.525]

Жидкость похожа на газ тем, что Е и О также равны нулю, ее форму можно изменять как угодно, не применяя особого напряжения. И все же жидкость более всего похожа на твердое тело. Коэффициент теплового расширения ее и сжимаемость обычно имеют значения намного меньшие, чем соответствующие коэффициенты газов. Жидкость к тому же может испытывать небольшое отрицательное давление, чем и объясняется появление кавитации.  [c.10]

Количественное определение температуры связано с использованием любого зависящего от степени нагретости свойства тела. Так, для измерения температур может быть использовано тепловое расширение жидкостей (ртутные, спиртовые термометры) или газов (газовые термометры). Часто применяются термометры сопротивления, в которых используется изменение при нагревании электрического сопротивления металлической нити, а также термопары, в которых измеряется напряжение термотока, развивающегося при нагревании спая двух металлов.  [c.16]


Для однофазных рабочих тел, т. е. газов (напомним, что жидкости вследствие малого коэффициента теплового расширения не могут применяться  [c.523]

Жидкостный стеклянный термометр представляет собой тонкостенный стек- лянный резервуар, соединенный с капилляром, с которым жестко связана температурная шкала. В резервуар с капилляром заливается термометрическая жидкость, на температурной зависимости теплового расширения которой основано действие термометра. В качестве термометрической жидкости используют ртуть (чистая высушенная) и некоторые органические жидкости (толуол, этиловый спирт, керосин и т. п.).  [c.173]

Принцип действия стеклянных жидкостных термометров основан на различии теплового расширения термометрической жидкости и стекла термометра. Такие термометры применяются для измерения температур в интервале от —200 до - -750°С [12]. Хотя для заполнения жидкостных термометров используются различные жидкости, наибольшее распространение получили ртутные термометры.  [c.82]

Жидкость — физическое тело, обладающее текучестью, способностью изменять свою ( юрму под действием сколь угодно малых сил. Основными характеристиками жидкостей являются плотность, сжимаемость, тепловое расширение, вязкость.  [c.4]

Тепловое расширение жидкости характеризуется температурным коэффициентом объёмного расширения, представляющим собой относительное изменение объема жидкости при изменении температуры на 1 С  [c.4]

В неравномерно нагретой жидкости вследствие теплового расширения возникает неоднородное поле плотности, что в конечном итоге может привести к свободному движению.  [c.129]

Для различных условий работы изменение давления наполнителя получают за счет расширения инертного газа или за счет изменения упругости пара или теплового расширения жидкости. Обычно эти различные физические принципы используют в,, зависимости от пределов рабочей температуры или величины требуемого перестановочного усилия сильфона. "  [c.17]

По поводу упрош,ения задачи при наличии малых значений числа М нужно еще заметить следующее. В механике газов условие М< 1 считают обусловливающим практическую неизменяемость плотности газа в поле течения. Это вполне основательно, поскольку рассматриваются адиабатные процессы. Изменения давления и температуры в таких процессах имеют только механическое происхождение и при М<1 оказываются настолько слабыми, что не способны заметно влиять на плотность газа — газ становится как бы несжимаемым и ведет себя точно так же, как и подходящая жидкость с постоянной плотностью. Если, однако, из области механики перейти в область явлений теплопередачи, где течение газов изучается в условиях теплообмена с окружающей средой, то неизменяемость плотности уже нельзя полагать автоматическим следствием малости значений М. При наличии теплообмена можно произвольным образом менять температуру газа, а вместе с нею и плотность, независимо от существующего давления и условия, что М< 1. Плотность газа можно считать постоянной, если только одновременно с условием М< 1 в поле течения действуют незначительные разности температур. Более того, в некоторых случаях выполнение этих двух предпосылок недостаточно для сведения задачи к варианту абсолютно несжимаемой жидкости. Так, при свободной конвекции, возбуждаемой обычными отопительными приборами, разности температур и величины скоростей могут быть ничтожными, однако все развитие явления целиком вызывается тепловым расширением среды,  [c.89]

Рабочее давление. Конструкция корпуса должна свести до минимума то давление жидкости, которое воздействует на уплотнение. Давление может возникнуть в результате теплового расширения смазки или воздуха внутри закрытого корпуса или от масляного тумана, образуемого при работе зубчатой или червячной пары. Скопление утечки смазки в подшипниках скольжения и турбулизация масла, возникающая в антифрикционных опорах, также могут способствовать росту давления. Избыток смазки в этих случаях еще более ухудшает положение.  [c.31]

При линейных измерениях наибольшие погрешности вызываются динамическими изменениями температуры во времени, что ведет к изгибу и кручению элементов прибора. Угловое расположение поверхности при изотропных материалах не зависит от перехода в новое однородное температурное состояние, но при изменениях температуры происходят искажения углов вследствие тепловой инерции деформируемых тел. Тепловое расширение a жидкостей примерно в 15 раз больше, чем у стали.  [c.197]


С другой стороны, температурное поле вызывает нарушение однородности физических свойств среды. В областях с более высокой температурой плотность среды вследствие теплового расширения уменьшается и получается неустойчивое распределение плотности. Элементы жидкости приходят в движение, обусловленное температурным полем. Если жидкость (газ) не подвергается какому-либо внешнему механическому воздействию, побуждающему ее к движению (например, воздействию насоса), то единственным источником движения среды в этом случае оказывается процесс теплообмена. Такое движение жидкости или газа называется свободной конвекцией, в отличие от вынужденной конвекции, когда движение среды обусловливается внешним механическим воздействием.  [c.24]

Роль теплопроводности для продольных волн в однородном твёрдом теле идентична роли теплопроводности в жидкости и газе. Вклад теплопроводности составляет примерно половину от полного поглощения в металлах, в к-рых велики коэф. теплового расширения и теплопроводности, и всего лишь неск. процентов от полного поглощения в диэлектриках.  [c.658]

При всестороннем сжатии эластомеры ведут себя подобно жидкостям, подчиняясь закону Паскаля. Коэффициенты сжимаемости Р и коэ( ициенты объемного теплового расширения а у жидкостей и резин близки. Например, модуль всестороннего сжатия для большинства жидкостей находится в пределах /С = =  [c.52]

Тепловое расширение резины. Тепловое объемное расширение синтетических резин при температуре 70° С обычно составляет от (3—5,8)- Ю Парад, т. е. по величине это расширение близко к тепловому расширению жидкостей и в 10—20 раз больше, чем расширение черных металлов.  [c.566]

В ряде случаев соединение труб подвергается резкому нагреву и охлаждению. Очевидно, если участок гидросистемы, расположенный в горячей зоне, работает периодически, то температура узла соединения (вместе с заключенной в нем покоящейся жидкостью) может достигнуть температуры окружающей среды. Поскольку температура рабочей жидкости в общей гидросистеме может быть значительно ниже температуры окружающей среды, то при подаче жидкости в этот участок (при включении рассматриваемой системы в действие) детали соединения трубопровода подвергнутся резкому и неравномерному охлаждению, в результате герметичность вследствие неравномерного теплового расширения и расслабления стыка может быть нарушена.  [c.582]

В насосах, перекачивающих горячие жидкости, между комплектом рабочих колес и упорной втулкой предусмотрен зазор 0,5 - 1 мм для компенсации тепловых расширений деталей ротора. Скользящая посадка рабочих колес на вал создает возможность для разбалансировки ротора.  [c.6]

Рис. 6 иллюстрирует это явление. Вследствие теплового расширения жидкость расслаивается (часть жидкости, находящаяся ближе к нижней плоскости, характеризуется пониженной плотностью по сравнению с верхним слоем). Возникающий при этом градиент плотности направлен противоположно силе тяжести, что создает неустойчивость с формированием восходящих и нисходящих потоков (рис. 7).  [c.25]

Оно xapaKTepHjyei отношение подъемной силы, возникающей вследствие теплового расширения жидкости, к силам вязкости.  [c.83]

В соединениях трубопроводов, несущих горячие жидкости или газы, необходимо предус.матривать компенсаторы тепловых расширений, предотвращающие возникновение термических усилий и деформацию трубопроводов.  [c.380]

Второе слагаемое учияшает изменение плотности еидкости. Если считать жидкость несжимаемой, то изменение ее плотности обусловлено тепловым расширением. Известно, что температурный коэффициент объемного расширения определяется зависимостью Д/  [c.98]

Жидкостная термометрия осиоваиа на тепловом расширении жидкости. Вследствие различия теплового расширения жидкости и стеклянного (кварцевого) резервуара, в который она заключена, при изменении температуры изменяется длина столбика жидкости, находящейся в капилляре. Температуру определяют по положению иениска относительно шкалы, нанесенной непосредственно на капилляр или на пластинку, жестко соединенную с ним. Жидкостные термометры применяют для измерения температур от —200 до 1200 °С. В табл. 8.9 и 8.10 приведены сведения о свойствах важнейших термометрических жидкостей и стекол, используемых при изготовлении термометров.  [c.178]

Тепловая диссипация кипетической энергии связана с необратимостью пли ненолитропичностью процессов в газе, а именно при сжатии, когда температура газа выше температуры жидкости газ рассеивает в жидкость тепла больше, чем возврагцает от жидкости при расширении, когда его температура ниже температуры жидкости.  [c.119]

Механизм тепловой днссинации состоит в том, что прп сжатии пузырька кинетическая энергия жидкости переходит в энергию сжатия газа, температура которого при этом повышается. Из-за тенлопроводностп часть этой энергии в виде тепла переходит в жидкость. При расширении пузырька, когда газ расширяется, его температура понижается. Хотя прп этом теило 5+ идет из жидкости в газ, по из-за неравновесности т. е.  [c.126]

Конструкция ротора многоступенчатого. насоса зависит от конструктивной схемы насоса. При одностороннем расположении рабочих колес и скользящей посадке- на вал (разборный ротор) рабочие колеса торцами ступиц упираются друг в друга и передают суммарное осевое усилие на бурт вала (рис. 7.18,в). В случае неперпенцикулярности торцов ступиц возможны возникновение перетоков жидкости по валу и его дополнительный изгиб. Поэтому торцы ступиц обрабатываются с перпендикулярностью 0,01— 0,02 мм при высокой чистоте контактных поверхностей. В горячих насосах между комплектом рабочих колес и упорной втулкой предусмотрен зазор 0,5—1 мм для компенсации тепловых расширений деталей ротора. Скользящая посадка рабочих колес на вал создает возможность для разбалансировки ротора. Наиболее благоприятные условия для обеспечения уравновешенности создаются при неразборной конструкции ротора, когда рабочие колеса посажены на вал с натягом (рис. 7.18,г). Сборка и разборка такого ротора, как правило, производится с подогревом ступицы рабочего колеса. Вал такого ротора имеет ступенчатое уменьшение диаметров посадочных поверхностей под колеса.  [c.171]


Для однофазных рабочих тел, т. е. газов (напомним, что жидкости вследствие малого коэффициента теплового расширения нецелесообразно применять в качестве рабочих тел тепловых двигателей), процесс подвода теплоты может быть приближен к изотермическому, если он будет состоять из чередующихся процессов изобарического подвода небольшого количества теплоты с последующим адиабатическим расширением в небольшом интервале давлений (рис. 8.4). Такой процесс может быть осуществлен, например, в газовой турбине при ступенчатом сжигании топлива с последующим расширением продуктов сгорания в отдельных ступенях турбины. После расширения в одной из ступеней турбины рабочее тело подается в промежуточную камеру сгорания, где его температура посредством дополнительного сжигания топлива доводится до первоначальной. Чем больше таких ступеней и чем меньше расширение в каждой из ступеней, тем ближе кривая процесса, представляющая собой пилообразную линию, к изотерл е. Аналогично процесс отвода теплоты путем многоступенчатого сжатия с промежуточным  [c.512]

Различают естественное и вынужденное движение (конвекцию) жидкости. Вынужденное движение создается внешним источником (насосом, вентилятором, ветром). Естественная конвекция возникает только при геплообмене за счет теплового расширения нагретой около теплоотда-ющей поверхности жидкости (рис. 9.1). Интенсивность теплового расширения характеризуется температурным коэффициентом объемного расширения  [c.80]

Помимо изотермической сжимаемости для конвективного теплообмена большое значение имеет тепловое расширение жидкости. Последнее характеризуется температурным коэффициентом объемного расширения, определяемым уравнением (p = onst)  [c.129]

I — характерный размер и — перемещение. К — вязкость упруго-вязкой среды у — удельная поверхностная энергия материала а — коэффициент температуропроводности а — коэффициент теплового расширения АТ — разница температур теля и среды, вызывающая разрушение материала JJ, коэффициент Пуассона w — скорость потока жидкости п — частота возбуждения потока а — коэффициент теплообмена — коэффициент теплопроводности тела коэффициент теплопроводности газа v — кинематичесипя вязкость Др — перепад давления газа р — плотность с —удельная теплоемкость а- — скорость звука в заданной среде g — ускорение земного притяжения q — удельный тепловой поток — температура среды —  [c.217]

Для стабилизации положения изолируемого объекта относительно поршня 13 а также компенсации теплового расширения жидкости в аа-ваянных ильфонах, система имеет жесткую обратную связь, состоящую  [c.213]

Для того чтобы понять процессы, сопровождаюш,ие теплоотдачу к жидкости в сверхкритической области, необходимо проанализировать изменение физических свойств жидкости в окрестности критической точки и выше нее. Теоретически удельная теплоемкость при постоянном давлении и коэффициент теплового расширения в критической точке стремятся к бесконечности. Указанное свойство можно рассматривать как следствие того обстоятельства, что критическая точка является верхней границей области, в которой может происходить кипение. Скрытая теплота парообразования в критической точке стремится к нулю, а удельные объемы жидкости на кривой насыщения и газообразной фазы становятся одинаковыми. При давлении ниже критического на бесконечно малую величину можно увеличить энтальпию на бесконечно малую величину, равную скрытой теплоте парообразования температура при этом останется постоянной. Одновременно происходит увеличение удельного объема на бесконечно малую величину. В связи с этим предполагается, что удельная теплоемкость и коэффициент теплового расширения при давлении ниже критического становятся бесконечно большими. Подобное предельное состояние достигается также и в закритической области, где наблюдается резкий конечный максимум удельной теплоемкости. Удовлетворительные экспериментальные доказательства бесконечно больших значений любого из двух указанных физических параметров в сверхкритическом состоянии отсутствуют. Сверхкритическая температура, при которой наблюдается максимум удельной теплоемкости, по терминологии Голдмена [3] называется псеводокрити-ческой температурой. Псевдокритическая температура для большинства веществ увеличивается с давлением, а величина максимума удельной теплоемкости уменьшается (фиг. 1).  [c.352]

Регулирование [ [двигателей объемного вытеснения В 25/(00-14) (паросиловых К 7/(04, 08, 14, 20, 28) паротурбинных К 7/(20, 24, 28)> установок-, распределителышх клапанов двигателей с изменяемым распределением L 31/(20, 24) турбин путем изменения расхода рабочего тела D 17/(00-26)] F 01 движения изделий на металлорежущих станках, устройства В 23 Q 16/(00-12) F 04 [диффузионных насосов F 9/08 компрессоров и вентиляторов D 27/(00-02) насосов <В 49/(00-10) необъемного вытеснения D 15/(00-02)) и насосных установок (поршневых В 1/(06, 26) струйных F 5/48-5/52) насосов] F 02 [забора воздуха в газотурбинных установках С 7/057 зажигания ДВС Р 5/00-9/00 подогрева рабочего тела в турбореактивных двигателях К 3/08 реверсивных двигателей D 27/(00-02) (теплового расширения поршней F 3/02-3/08 топливных насосов М 59/(20-36), D 1/00) ДВС] зазоров [в зубчатых передачах Н 55/(18-20, 24, 28) в муфтах сцепления D 13/75 в опорных устройствах С 29/12 в подшипниках <С 25/(00-08) коленчатых валов и шатунов С 9/(03, 06))] F 16 (клепальных машин 15/28 ковочных (молотов 7/46 прессов 9/20)) В 21 J количества (отпускаемой жидкости при ее переливании из складских резервуаров в переносные сосуды В 67 D 5/08-5/30 подаваемого материала в тару при упаковке В 65 В 3/26-3/36) конденсаторов F 28 В 11/00 G 05 D [.Mex t-нических (колебаний 19/(00-02) усилий 15/00) температуры 23/(00-32) химических н физико-химических переменных величин 21/(00-02)] нагрузки на колеса или рессоры ж.-д. транспортных средств В 61 F 5/36 параметров осушающего воздуха и газов в устройствах для сушки F 26 В 21/(00-14) парогенераторов F 22 В 35/(00-18) подачи <воздуха и газа в горелках для газообразного топлива F 23 D 14/60 изделий к машинам или станкам В 65 Н 7/00-7/20 питательной воды в паровых котлах F 22 D 5/00-5/36 текучих веществ в разбрызгивающих системах В 05 В 12/(00-14))  [c.162]

НАПОР [<гидростатический определяется отношением полной потенциальной скоростной характеризуется отношением кинетической) энергии некоторого объема жидкости к массе жидкости в этом объеме температурный — разность температур двух различных смежных или разделенных стенкой сред, между которыми происходит теплообмен] НАПРЯЖЕНИЕ механическое [служит мерой внутренних сил, возникающих в деформированном теле и определяемой отношением выявленной силы к величине элементарной площадки, выбранной внутри или на поверхности тела в гидроаэростатике определяется как сила, отнесенная к единице площади поверхности, на которую она действует касательное возникает под действием сил, касательных к нормальное возникает под действием сил, нормальных к> поверхности тела трение численно равно силе внутреннего трения в газе, действующей на единицу площади поверхности слоя] электрическое (численно равно суммарной работе, совершаемой кулоновскими и сторонними силами при перемещении по участку цепи единичного положительного заряда анодное прилагается между анодом и катодом электронной лампы или гальванической ванны зажигания обеспечивает переход несамостоятельного газового разряда в самостоятельный переменное, действующее значение которого вычисляют (для периодического напряжения) как среднеквадратичное значение напряжения за период его изменения пробивное вызывает разряд через слой диэлектрика сеточное приложено между сеткой и катодом электронной лампы и служит для запирания лампы при определенном значении его на участке цепи равно произведению его сопротивления на силу тока) НАПРЯЖЕНИЯ механические (контактные возникают на площадках соприкосновения деформируемых тел температурные образуются в теле вследствие различия температур составных его частей и ограничения возможностей теплового расширения со стороны окружающих частей тела или других тел остаточные вызываются крупными дефектами материала, неоднородностью кристаллической структуры и дефектами атомно-кристаллических решеток)  [c.253]


В объёме сверхтекучего Не могут распространяться волиы двух типов — первый звук (ПЗ) и отарой звук (ВЗ). Волны первого типа аналогичны гидроди-намич. звуку в обычной жидкости и представляют собой в осн. распространяющиеся колебания плотности р и давления р. Сиецифич. особенностью Не II является существование т. п. ВЗ — теп.повЕлх волн , распространяющихся колебаний темн-ры Т п энтропии S (в обычных средах температурные колебания затухают на расстоянии порядка длины волны). Поскольку коэф. теплового расширения др/дТ , гелия аномально мал, колебания плотности (давления) и темп-ры (энтропии) оказываются практически независимыми. При этом скорость ПЗ и-1 задаётся обычным соотношением ui dp/dp)g, а скорость ВЗ где р ,  [c.70]

ТЕМПЕРАТУРНАЯ ШКАЛА — способ получения числ. значений темп-ры посредством измерения др. физ. величины, с к-рой темп-ра связана известной зависимостью. Темп-ра Г—величина неаддитивная (интенсивная), её в принципе невозможно измерить без использования Т. ш., устанавливающей связь t(x) темп-ры с измеряемой величиной. V, наз. термометрическим свойством. Термометрич, свойством может служить электрич. сопротивление металла, тепловое расширение жидкости, магн. восприимчивость парамагнетика и т. д. (см. Термометр).  [c.62]

Первичные Т., как прави. ю, сложны и непригодны для практич. измерений, где применяются вгоричные Т., к-рые градуируют по показаниям первичных Т. К числу распространённых вторичных Т. относятся жидкостные Т., в к-рых используется различие в величинах теплового расширения жидкости и прозрачной оболочки, к-рую она запо.тняет. По.тожение мениска жидкости в капилляре, припаянном к оболочке, определяется гемп-рой, к-рая отсчитывается ю делениям на шкале, расположенной вдоль капилляра. Для разных диапазонов жидкостные Т, заполняют пентаиом (от -200 до 35 С), спиртом (от —80 до  [c.94]

Лучшей жидкостью для пружин является та, которая имеет наиболее высокий коэффициент сжимаемости под давлением и малый коэффициент теплового расширения, хотя практически соотношение этих коэффициентов для большинства распространенных жидкостей является постоянным. В практике для пружин применяют жидкости, которые при повышении давления от 0 до 3500 кПсм" уменьшаются в объеме примерно на 17—18%.  [c.32]

Рабочий участок установки (рис. 2) позволяет изучать кризис при кипении жидкости, движущейся в канале кольцевого сечения. Основной деталью рабочего участка является тепловыделяющий элемент (ТВЭЛ), который изготовлен из нержавеющей или никелевой трубки. ТВЭЛ нагревается постоянным током, который подводится к нему по медным шинкам. Верхняя шинка уплотнена с помощью сильфона, который компенсирует тепловые расширения ТВЭЛа, а электрический контакт осуществляется с помощью гибких медных проводников. Верхняя шинка находится под нулевым потенциалом и соединена с корпусом установки. Нижняя шинка выводится через фторопластовый изолирующий сальник, конструкция которого позволяет легко снять фторопластовую втулку при разборке. Нижняя шинка находится под положительным потенциалом относительно земли.  [c.223]

Один из способов стабилизации характеристики заключается в изготовлении блока цилиндров из стали, вместо обычно применяющейся для этой цели бронзы, и, наоборот, изготовления поршней из бронзы вместо стальных. Так как коэффициент теплового расширения бронзы больше, чем стали, то при повышении температуры машины и рабочей жидкости зазор между блоком цилиндров и поршнем уменьшается. Поэтому, несмотря на значительное уменьшение вязкостн рабочей жидкости при нагреве, утечки в зазоре  [c.44]


Смотреть страницы где упоминается термин Жидкости тепловое расширение : [c.305]    [c.730]    [c.450]    [c.156]    [c.71]    [c.135]    [c.310]    [c.36]   
Гидравлика и гидропривод горных машин (1979) -- [ c.7 ]



ПОИСК



Расширение жидкости термическое (тепловое

Тепловое расширение

Тепловое расширение твердых тел и жидкостей



© 2025 Mash-xxl.info Реклама на сайте