Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поток специальный

Использование потоков газовзвеси при поперечном обтекании пучков труб представляет большой интерес. Известны реальные условия работы таких конвективных поверхностей с запыленным газом (тепло-утилизационные установки промышленных печей и пр.), для которых характерно падение теплопередачи из-за загрязнения труб. С другой стороны, возможна организация очистки поверхностей нагрева при одновременном улучшении теплообмена путем подачи в поток специально подобранной насадки [Л. 23, 56].  [c.245]


Регулирование гидромуфт воздействием на поток в рабочей полости практически осуществляется либо за счет поворота лопаток одного из рабочих колес, либо за счет дросселирования потока специальным шибером [8].  [c.237]

Измерения углов потока специально разработанными приборами внутри и за колесом показали, что структура потока очень сложна и что если перед лопатками ядро потока, как и предполагалось, подходит к нему без начальной закрутки ( uj 0), то в зоне перед самими лопатками, а также внутри канала на различных радиусах имеется закрутка, зависящая от положения по шагу канала. Об этом также свидетельствуют опыты с двухъярусной решеткой с различной подрезкой лопаток [20].  [c.295]

Создание эффективных конструкций становится под силу тем конструкторам, которые постоянно повышают уровень своих знаний и совершенствуют свою работу. Сегодня издается такое большое количество специальной литературы и информационных материалов, что их изучение может быть только выборочным. Поэтому понимание необходимости новых технических знаний, умение ориентироваться в потоке специальной литературы, знание мирового уровня развития техники по своей специальности позволяют конструктору приобрести большой опыт. Успех в этом деле во многом зависит от работоспособности и стараний конструктора, от его умения организовать и спланировать свой труд. Обширные знания, непрерывно пополняемые в процессе трудовой деятельности, и навыки, основанные на личных способностях и любви к своей профессии, позволяют стать эрудированным инженером и способным конструктором.  [c.8]

Электродвижущая сила термопар измерялась потенциометром малых сопротивлений типа ПМС-48 с соответственно подобранными к нему по своим характеристикам гальванометрами типов ГЭС-47 и ГМП. Модель в рабочем участке аэродинамической трубы устанавливалась на боковой трубчатой державке из стали с внешним диаметром 13 мм, навинченной на впаянный в тело медный штуцер, и удерживалась в потоке специальным координатником с тремя степенями свободы (подъем, опускание и поворот в горизонтальной плоскости). Полые штуцер и державки служили одновременно выводом для термопар и трубок с охлаждающей водой.  [c.259]

На рис. 9. 7 внизу показаны схемы входных устройств с частично изэнтропическим сжатием. Как видно, при обтекании сверхзвуковым потоком специально спрофилированных участков центрального тела или стенок внутреннего канала образуется слабый косой (конический) скачок и за ним серия волн сжатия (они на рис. 9. 7 показаны штриховыми линиями). В волнах сжатия волновые потери отсутствуют, что позволяет затормозить сверхзвуковой поток с малыми обш,ими потерями полного давления.  [c.261]


Обнаружены необычные эффекты уменьшение (при некоторых фиксированных значениях параметра МГД-взаимодействия) торможения сверхзвукового потока при переходе от использования модели невязкого газа к модели вязкого течения в рамках полной системы уравнений Навье-Стокса уменьшение торможения сверхзвукового вязкого ламинарного потока при увеличении параметра взаимодействия. Эти и другие обнаруженные в работе эффекты требуют углубленного анализа МГД-способа торможения потока специального профилирования канала и магнитного поля, объединения газодинамических и магнитогазодинамических методов торможения потока.  [c.400]

Компоновки УСП конструируются одновременно с монтажом непосредственно в металле целиком из готовых нормализованных и взаимозаменяемых деталей и узлов. Практически создается непрерывное круговое движение универсально-сборной оснастки разборка, сборка и эксплуатация необходимых приспособлений для выполнения разнообразных операций. Такое цикличное обращение элементов в компоновках заменяет безвозвратный поток специальных неразборных приспособлений, снимаемых со станков при сходе изделий с производства.  [c.12]

Специальная проблема пограничного слоя на пористой поверхности с подачей или отсосом сквозь нее жидкости или газа зародилась уже давно в связи главным образом с такими задачами управления пограничным слоем, как уменьшение. сопротивления трения, увеличение коэффициента максимальной подъемной силы и некоторыми другими, в частности, устойчивостью и управляемостью самолета. Эти эффекты достигались обычно за счет затягивания ламинарного участка пограничного слоя или, наоборот, искусственной турбулизации его. Обзор результатов, достигнутых в этой области, мон<но, например, найти в последнем (пятом) издании упомянутой выше (стр. 509) монографии Г. Шлихтинга. В последнее время применительно к водным потокам предлагаются методы уменьшения сопротивления обтекаемых тел в каналах при помощи ввода в поток специальных полимерных примесей (в очень малой концентрации) либо мелких пузырей воздуха (газа).  [c.544]

Мы приветствуем издание нашей книги по основам нелинейной оптики на русском языке. Надеемся, что она поможет студентам советских вузов, физикам и другим исследователям, работающим над актуальными проблемами нелинейной оптики, ориентироваться в постоянно нарастающем потоке специальной литературы в этой новой области науки.  [c.7]

Коэффициент лобового сопротивления контейнера определяли пружинным динамометром. Контейнер, закрепленный в 20 м от входа в трубопровод, обдувался потоками воздуха с несколькими различными расходами. Перепад давлений на контейнере определяли наклонными пьезометрами, а расход (после предварительного выравнивания скоростей потока специальной диафрагмой) — лопастным анемометром на выходе первого участка, расположенного на расстоянии 246 м от входа. В результате обработки данных по формуле  [c.122]

Тепломер ИТП-2 конструкции ОРГРЭС предназначен для измерения тепловых потоков от нагретых поверхностей. Действие тепломера основано на воспроизведении измеряемого теплового потока специальным моделирующим элементом. Тепломер не нуждается в градуировке датчика, характеристика которого определяется электрическими и геометрическими параметрами.  [c.90]

Новой разновидностью тепломеров является измеритель тепловых потоков (ИТП-2) конструкции ОРГРЭС. Этот прибор основан на воспроизведении измеряемого теплового потока специальным моделирующим устройством.  [c.480]

Доказательство. По предложению 14.2.1 поток обладает трансверсалью т, а по предложению 14.2.2 каждая орбита пересекает т. Если мы параметризуем т углом в S, то отображение возвращения на т будет определять некоторый диффеоморфизм окружности /. Если время возвращения точки с координатой в равно h 0), то мы можем ввести координаты в, у) иа Т , где О < 2/ < Н в), и в этих координатах векторное поле примет вид -щ, т. е. наш поток — специальный поток.  [c.461]

В конструкциях отечественных сварочных выпрямителей находят применение селеновые вентили с пластинами размером 100 X 400 мм, собираемые в блоки необходимых мощности или напряжения. Обычно блоки вентилей принудительно охлаждаются потоком воздуха от специального вентилятора. В кремниевых выпрямителях силовые блоки собирают из отдельных вентилей на силу тока 50 или 200 А (ВК-50 или ВК-200-3) с допустимым обратным напряжением 150 В. Кремниевые вентили также требуют интенсивного принудительного охлаждения, для чего их укрепляют на радиаторах, охлаждаемых потоком воздуха от вентилятора.  [c.133]


В самом общем случае система может обмениваться со средой и веществом (массообменное взаимодействие). Такая система называется открытой. Потоки газа или пара в турбинах и трубопроводах — примеры открытых систем. Если вещество не проходит через границы системы, то она называется з а к р ы-т о й. В дальнейшем, если это специально не оговаривается, мы будем рассматривать закрытые системы.  [c.7]

Сопла и диффузоры. Специально спрофилированные каналы для разгона рабочей среды и придания потоку определенного направления называются с о-п л а м и. Каналы, предназначенные для торможения потока и повышения давления, называются диффузорами. Техническая работа в них не совершается, поэтому уравнение (5.4) приводится к виду  [c.45]

Если е = 0,8 (окисленная стальная поверхность), а Еа = 0,1, то при наличии одного экрана 2/91,2 = 0,073, т. е. лучистый тепловой поток уменьшается более чем в 13 раз. При наличии трех таких экраном лучистый теплообмен снижается в 39 раз На этом основано конструирование специальной изоляции, состоящей из множества полированных металлических пластин или фольги с зазорами, ши-  [c.94]

Более совершенным является метод прямого измерения лучистого потока радиометром специальной конструкции [139, 143—148]. Применение двух модификаций этого прибора позволяет независимо измерять полный тепловой поток от слоя к поверхности и лучистый поток [145]. С помощью метода радиометра можно проводить измерения излучательных характеристик исследуемой системы и определять влияние на лучистый поток различных параметров. Измерения, выполненные этим методом, показали, что степень черноты дисперсной системы всегда выше, чем степень черноты поверхности использованных частиц, но может быть гораздо меньше 1 [143—145, 147, 148].  [c.137]

В [Л. 113] гидросмесь трактуется как сумма двух потоков фиктивных континуумов (жидкости и частиц). В отличие от большинства других исследователей М. А. Дементьев специально подчеркивает эту фиктивность, оправдывая ее лишь приложимостью методов механики сплошной среды. В [Л. 113] для оценки надежности использования модели фиктивного континуума рекомендуется сопоставлять объем характерного структурного образования турбулентности, определяемого кубом поперечного масштаба турбулентности  [c.29]

Однако в ряде исследований не усматривается различие в теплообмене с закрепленными и движущимися частицами (Л. 48, 50, 172, 292]. Так, например М. Г. Крюкова [Л. 172] провела изучение влияния вращения частицы в вынужденном потоке на интенсивность теплообмена. Процесс по существу моделировался обдувкой вращающихся закрепленных стальных шариков 19,81 мм. В итоге был получен вывод, что вращение не создает качественных изменений, повышающих интенсивность теплообмена. В работе оговаривается, что распространение полученного результата на небольшие и неправильные частицы требует специальной проверки.  [c.148]

Результаты исследования газовых суспензий, т. е. потоков с тонкодиспергированными частицами, приведены в [Л. 224, 225, 343, 362, 380]. Во всех случаях использованы частицы графита в [Л. 380]-1- 5 мк, в [Л. 362]—5 мк, в [Л. 343]—2 мк, в [Л. 224]— 10,3 мк. Исследование [Л. 370, 380] проведено по заданию Комиссии по атомной энергии США компанией Бабкок и Вилькокс для изуче ния возможностей интенсификации теплоотвода в гетерогенных ядер-ных реакторах путем использования газографитовых потоков. Особенности атомных установок с газографитовыми теплоносителями специально анализируются далее в гл. 12. Здесь рассмотрим результаты опытов, которые были проведены на замкнутом контуре. Кон-  [c.221]

СПЕЦИАЛЬНЫЕ СЛУЧАИ ТЕПЛООБМЕНА С ПОТОКАМИ ВЗВЕСИ  [c.233]

Большие перспективы применения нового вида текучих систем собственно основаны на необходимости перерабатывать разнородные сыпучие материалы и на возможности управлять свойствами обычных, однородных потоков путем добавления к ним различного количества дискретных частиц, геометрические и физико-хи-мические характеристики которых могут быть специально подобраны. В этом смысле проточным дисперсным системам можно предсказать большое будущее.  [c.398]

Описание исследуемого процесса, т. е. отражение в аналитической форме предполагаемой физической модели процесса, существенно для использования методов теории подобия. Трудности решения этой задачи для макронеоднородных потоков специально рассмотрены в гл. 1. В случае потоков газовзвеси необходимо дополнительно сформулировать условия однозначности. Затем, с учетом последних, пользуясь, например, правилами подобного преобразования системы дифференциальных уравнений, можно установить условия гидродинамического подобия потоков газовзвеси. Тогда критериальное уравнение гидродинамики, записываемое в неявном виде для искомой безразмерной функции, например Ей  [c.115]

Численные решения получить для пяти вариантов, в которых в качестве материала носового профиля выбраны берилий, вольфрам, молибден, ниобий и титан. Считать, что носовые профили заш,иш,ены от химического воздействия набегающего потока специально нанесенной пленкой окислов. Начальная температура в профиле 15° С, степень черноты  [c.269]

Включение двигателя Ускорение Реверсирование Регулирование скорости Затор.маживание Регулирование потока Специальное управление тормозным электромагнитом Зашита от перегрузки Нулевая защита Грузовая или упорная защита  [c.64]

При дугоконтактной сварке в магнитном поле кромки соединяемых деталей нагреваются электрической дугой. Так, при сварке труб между их торцами возбуждается электрическая дуга, которая, взаимодействуя с магнитными потоками специальных катушек, приводится во вращательное движение и перемещается по торцу трубы. Вследствие большой скорости вращения дуги в зазоре между торцами создается сплошное кольцо светящейся плазмы. Кромки труб нагреваются до оплавления, после чего включается механизм осадки и одновременно выключается ток питания дуги. Благодаря пластическому деформированию металла стыка поверхности кромок тесно соприкасаются, обеспечивая межатомную связь, характерную для сварки в твердой фазе.  [c.243]


При дугоконтактной сварке в магнитном поле кромки ссединяемых деталей нагреваются электрической дугой, которая, взаимодействуя с магнитными потоками специальных катушек, приводится во вращательное движение и перемещается по торцу трубы.  [c.293]

Теоретически увеличение числа скач1 )в в диффузорах с внешним сжатием позволяет пределе осуществить непрерывное изэнтропическое торможение сверхзвукового потока. В этом случае при обтекании потоком специально спрофилированного центрального тела с непрерывно изменяющейся кривизной возникают волны сжатия, в которых потери практически отсутствуют. Схема такого диффузора приведена на рис. 2. 9, а. Однако у реальных диффузоров с внешним изэнтропическим сжатием вследствие ряда ограни-чений процесс сжатия обычно завершается скачком уплотнения. Поэтому и у этих диффузоров суммарный коэффициент восстановления давления огд получается меньше единицы и несколько снижается с ростом скорости полета.  [c.72]

Работа расширения / совершается рабочим телом на поверхностях, ограничивающих выделенный движупгийся объем, т. е. на стенках агрегата и границах, выделяющих этот объем в потоке. Часть стенок агрегата неподвижна, и работа расширения на них равна нулю. Другая часть стенок специально делается подвижной (рабочие лопатки в турбине и компрессоре, поршень в поршневой машине), и рабочее тело совершает на них техническую работу /тех-  [c.44]

Все приведенные выше формулы для расчета теплового потока Q (или площади F) в теплообменниках пригодны для идеальных условий чистые теплоносители, строго одинаковые условия обтекания поверхностей и т. д. В реальных теплообменниках получаются заниженные значения Q, поэтому приходится вводить специальные поправки для учета неиде-альности теплообменника.  [c.108]

Уходящие из котла газы очищаются С Т золы в золоулавливающем устройстве 10 и дымососом II выбрасываются Е атмосферу через дымовую трубу 12. Уловленная из дымовых газов пылевид-гая зола и выпавший в нижнюю часть топки шлак удаляются, как правило, в потоке воды по каналам, а затем образующаяся пульпа откачивается специальными багерными насосами 13 и удаляется по трубопроводам. Однако в связи с тем что зола может использоваться для нужд строительства, например как инертная добавка в бетон (а для этой  [c.159]

Батарейный золоуловитель состоит из большого числа циклонов небольшого диаметра (150— 250 мм), смонтированных в одном корпусе и работающих параллельно. Каждый циклончик золоуловителя работает подобно циклону ЦН с тем лишь отличием, что закручивание потока осуществляется специальными вставками, расположенными в кольцевом пространстве между корпусом циклончика и внутренней отводящей трубой.  [c.165]

Твэлы, находящиеся длительное время в активной зоне, облучаются слишком большим интегральным потоком нейтронов, и микротопливо имеет весьма высокие значения относительного выгорания тяжелых ядер (fima), что может привести к разрушению микротвэлов и повышению активности теплоносителя. Твэлы, быстро проходящие активную зону, наоборот, мала выгорают, и их нужно вернуть в активную зону на повторное использование. Таки.м образом, требуется систе.ма возврата невыгоревших твэлов в активную зону реактора со специальной установкой для измерения выгорания топлива в выгружаемых твэлах и сложным перегрузочным устройством.  [c.24]

Исследования локального коэффициента теплоотдачи прово-. лились в трех плоскостях в горизонтальной — пр налитеи шести точек контакта с шарами-имитаторами в вертикальной — при наличии четырех точек касания (две в нижней чаепр и- две-в горизонтальной плоскости) и во второй вертикальнсир плоскости, расположенной под углом 90 к первой, где имелись только две точки касания, расположенные в лобовой части электрокалориметра. Специальным фиксатором шар поворачивался в горизонтальной либо вер габ льной плоскостях с интервалом через 7°30 по центральному углу. Тепловой поток в столбике подсчитывался по измеренным термопарами температурам в двух сечениях по высоте столбика, а локальный коэффициент — по тепловому потоку и температурному напору между поверхностью и газом на расстоянии 10 мм от поверхности.  [c.83]

Специальные модели применяются для описания переноса излучения в такой высококонцентрированной дисперсной среде, как плотный зернистый слой [174]. В соответствии с квазигомоге1Нными моделями дисперсная среда представляется как непрерывная. Общая плотность теплового потока определяется суммой удельного теплового потока за счет теплопроводности- и излу> чекия. В ячеечных моделях перенос излучения рассматривается как локальный теплообмен, происходящий между поверхностямп соседних частиц. При этом влияние пустот дисперсной среды не учитывается. Ячеечные модели могут применяться при высокой оптической плотности и малых градиентах температуры в засыпке.  [c.146]

В опытах были использованы пять типов теплообменных каналов цилиндрические, труба в трубе, оребренные, коаксиальные (с двухсторонним отводом тепла) и оребренные коаксиальные. Температура газовзвеси контролировалась с помощью перпендикулярно расположенных гребенок из девяти хромель-алюмелевых термопар, смонтированных попарно на входе и выходе из теплообменного участка. В большинстве случаев (рис. 6-2) имело место практически безградиентное температурное поле. Раздельное измерение температур твердых частиц в газовзвеси проводилось с помощью специально разработанного прибора [Л. 71]. Принцип действия его основан на периодическом наборе порции движущихся в потоке частиц в чашечку, несущую внутри термочувствительный датчик. Согласно рис. 6-3 для графитовых частиц с й(т<0,5 мм. температуры компонентов потока практически совпадают. Для dr<0,5 мм температура определялась как средневзвешенная величина  [c.217]

Несмотря на определенное восполнение наших знаний о флюидных дисперсных потоках, последние нуждаются в специальных и всесторонних исследованиях. В первую очередь важно детально выяснить качественные изменения в структуре системы. Здесь при повышенных концентрациях необходимо в новых условиях вернуться к проблеме возможного вырождения турбулентности несущей среды, к задаче о распределении локальной и средней истинных концентраций, к необходимости оценить вид и значение критического и оптимального обобщающего критерия (включающего и соответствующие концеИтрации), к методам расчета аэродинамического сопротивления и реологических свойств системы и пр. Иначе говоря, лишь знание гидромеханических свойств флюидных потоков позволит надежно и на основе достаточно общих закономерностей вести их расчет в качестве массо- и теплоносителей. Важность этих задач определяется тем, что именно здесь возможно 264  [c.264]

Для промышленной энергетики представляет интерес использование специально организованного потока газовзвеси с целью улучшения теплоиспользования загрязненных газовых потоков. Согласно предложению 3. Л. Берлина [Л. 23], проверяемого на одном из промышленных котлов-утилизаторов (Л. 56], в газовый поток, несущий расплавленный или размягченный унос, добавляется инертная более крупная насадка (песок или гранулы из технологического уноса). Полагают, что это позволит охладить газы и частицы уноса за счет теплообмена в подобной трехкомяонентной проточной системе и этим предохранить поверхности нагрева от налипания, обеспечить своеобразную очистку этих поверхностей, несколько интенсифицировать теплообмен с поперечно омываемыми поверхностями трубных пучков (гл. 7). Отметим, что при этом следует учесть и повышение энергозатрат на преодоление сопротивлений по газовому тракту и на циркуляцию добавляемой насадки. Однако эти недостатки вполне перекроются теми преимуществами, которые могут возникнуть при успешном решении одной из сложных и важнейших задач промышленной энергетики — внедрении различных технологических систем использования запечных загрязненных газов.  [c.389]



Смотреть страницы где упоминается термин Поток специальный : [c.321]    [c.70]    [c.245]    [c.754]    [c.245]    [c.588]    [c.23]    [c.27]    [c.152]    [c.81]   
Динамические системы - 2 (1985) -- [ c.33 ]



ПОИСК



Адиабатическое испарение. Неадиабатическое испарение. Применение к испарительному охлаждению воды. Процесс конденсации. Заключение 6- 5. Специальные методы расчета теплового потока L-поверхности

Специальные случаи теплообмена с потоками взвеси

Специальные траектории, специальная множества потока на поверхности

Центробежная очистка при специальной организации потока жидкости в роторе центрифуги



© 2025 Mash-xxl.info Реклама на сайте