Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория полета ракет

Необходимость широкого обобщения полученных результатов и построения общей теории полета ракет (теории баллистического проектирования) становилась к этому времени все более ощутимой. Принципиальная осуществимость разработки такой теории отмечалась еще К. И. Константиновым, свидетельствовавшим, что факты... указывают уже возможность математической теории конструкции и стрельбы ракет... [7]. Но он же констатировал, что это наука, которую еще надобно создать , и,высказанная им кон-  [c.410]

Теория космических полетов 409, 414, 415 Теория полета ракет 409, 410, 414 Тепловозная тяга 205, 211, 212, 213, 230, 236, 242, 247  [c.465]


Основоположник научной теории полета при помощи реактивного двигателя — выдающийся русский ученый-изобретатель К. Э. Циолковский. Им впервые в мире в 1903 г. была разработана теория полета ракеты и изобретен первый жидкостный реактивный двигатель. К. Э. Циолковскому принадлежит также первенство и по другим изобретениям в реактивной технике. Многое сделали для развития реактивных двигателей и другие русские ученые-новаторы.  [c.55]

Книга состоит из трех разделов. В первом разделе три главы Мысли о механике , Теоретическая механика и развитие современной техники и Краткий исторический очерк развития механики . В этом разделе автор пытался рассмотреть основные задачи механики как науки о простейшей форме движения материальных тел, а также дать краткий обзор научных достижений современной механики тел переменной массы и ракетодинамики. Размышления над задачами, решение которых занимает умы исследователей 60-х годов XX в., позволяют однозначно сделать вывод о необходимости критического пересмотра содержания традиционного курса механики и внесения в программу новых задач и методов, рожденных бурным развитием новых областей техники. В наши дни преподаватели механики не могут уйти от вопросов теории полета ракет, реактивных самолетов искусственных спутников Земли и космических кораблей.  [c.4]

Известно также, что в тех задачах техники, где приходилось иметь дело с движением тел переменного веса (например, у самолетов с большими запасами горючего), обычно предполагалось, что траекторию движения можно разделить на участки и считать на каждом участке вес движущегося тела постоянным. Таким приемом трудную задачу об изучении движения тела переменной массы заменяли более простой и уже изученной задачей о движении тела постоянной массы. Изучение движения ракет как тел переменного веса (переменной массы) было поставлено на твердую научную почву К. Э. Циолковским. Именно строгое рассмотрение движения ракеты как тела переменной массы является принципиальным достижением Циолковского в теории полета ракет, которую мы называем теперь ракетодинамикой. Циолковский является основоположником современной ракетодинамики.  [c.83]

Позднее, в 1923 г., когда зарубежные исследователи (Годдард, Оберт) стали повторять основные выводы Циолковского по теории полета ракет и межпланетных путешествий, он с гордостью писал  [c.83]

Великая Октябрьская социалистическая революция была той могучей силой, которая вдохновила 60-летнего Циолковского на творческие дерзания. Его талант выявился во всем могуществе и блеске. Он предстал перед современниками как зачинатель новой области человеческого знания, новой науки, новой отрасли промышленности. Полеты ракет наблюдали многие и до Циолковского. История говорит нам, что первые фейерверочные ракеты были созданы в Китае более двух тысяч лет тому назад. И, однако, никто из многих миллионов людей, наблюдавших фейерверки и иллюминации, не пришел к созданию новой науки — теории полета ракет. Более того, пороховые ракеты были предметом внимания значительного круга образованных военных специалистов в течение почти всего XIX столетия, и все же теории реактивного движения не существовало до работ Циолковского.  [c.101]


Но особенно велики заслуги К. Э. Циолковского в области изучения теории реактивного движения и движения тел переменной массы, т. е. в области теории движения ракет и ракетных приборов. Еще в 1903 г. в журнале Научное обозрение К. Э. Циолковский опубликовал работу Исследование мировых пространств реактивными приборами , в которой впервые была дана теория полета ракеты и обоснована возможность применения реактивных аппаратов для межпланетных сообщений. В 1911—1914 гг. он уточнил свои предварительные данные о космических полетах. Имя К. Э. Циолковского долгое время оставалось малоизвестным его считали чудаком-фантазером, мечтателем-идеалистом. Только после Великой Октябрьской социалистической революции научные заслуги К. Э. Циолковского получили свою истинную оценку.  [c.12]

Автор книги глубоко убежден, что в наши дни учителю средней школы (так же как и исследователю любой специальности) невозможно уйти от вопросов теории полета ракет и реактивных самолетов, искусственных спутников Земли и космических кораблей. Будущие учителя средней школы, которые начнут преподавание через 4—5 лет, обязаны достаточно глубоко понимать те существенные перемены в науке и жизни человеческого общества, которые вызваны быстрым развитием ракетной техники и космическими полетами.  [c.5]

Теория полета ракеты в межпланетном пространстве была разработана К. Э. Циолковским. Им, в частности, выведена формула, которую можно считать основной формулой астронавтики.  [c.23]

Вместе с тем появились и существенные дополнения, среди которых следует отметить написанную К. А. Лурье новую (тридцать первую) главу, содержащую изложение основ специальной теории относительности. В заново написанных параграфах получили освещение вопросы полета ракеты простейшей схемы, теории колебаний систем с произвольным конечным числом степеней свободы, применения общих теорем динамики систем материальных точек к сплошным средам (теоремы Эйлера, Бернулли, Борда), а также к выводу общих дифференциальных уравнений динамики сплошных сред и выражения мощности внутренних сил в сплошной среде. Последнее в случае сред с внутренним трением позволяет глубже судить о важном для механики понятии потерь (диссипации) механической энергии при движении среды.  [c.7]

Из многочисленных экспериментальных исследований движения жидкости в трубах укажем на опыты с трубками малого диаметра французского врача и испытателя Пуазейля (1799—1869), изучавшего движение крови в сосудах, и опыты английского физика Рейнольдса (1842—1912), установившего в 1883 г. закон подобия течений в трубах. Целую эпоху в истории развития гидромеханики составляют исследования по воздухоплаванию, включающие разработку теории полета самолетов и ракет. Результаты этих исследований были изложены в трудах выдающихся русских ученых Д. И. Менделеева (1834—1907), Н. Е. Жуковского (1849—1921) и С. А. Чаплыгина (1869—1942).  [c.8]

В 1932 г. в Москве была издана книга Цандера Проблемы полета при помощи реактивных аппаратов , содержащая точную и строгую теорию эллиптических траекторий полета ракет в поле тяготения Земли и достаточно простые формулы для расчета основных элементов таких траекторий. По-видимому, Цандер открыл оптимальные эллиптические траектории межпланетных перелетов независимо от В. Гомана, и поэтому более справедливо называть их траекториями Цандера — Гомана. Составленные Цандером таблицы для семейств эллиптических траекторий мало отличаются от современных имеющиеся в них отличия обусловлены последующим уточнением исходных данных.  [c.415]

К 30-м годам XX в. в различных странах растет количество теоретических трудов, в которых разрабатывается теория космического полета ракеты во всех его деталях. Это сопровождалось постановкой многочисленных опытов, в которых реактивные двигатели испытывались на земле и в тропосфере.  [c.232]

Развитие теории полета многоступенчатых ракет в свободном пространстве и в однородном поле тяготения, а также исследования, проведенные в последние 15—20 лет по теории стационарных движений самолетов с воздушно-реактивными двигателями, привели к интересным задачам динамики полета, тесно связанным с изучением экстремумов функций многих переменных. Можно констатировать, что экстремальные задачи, опирающиеся на исследование экстремумов функций и функционалов, уже вторглись в проблематику современной классической механики.  [c.39]


К. Э. Циолковский разработал теорию прямолинейных движений ракет. Он первый рассмотрел движение ракеты в среде без сил тяжести и сил сопротивления, выявив количественно, что может дать реактивный принцип сообщения движения. Полученная им формула для определения скорости ракеты получила в настоящее время мировое признание. Циолковский разработал теорию полета составных ракет, или ракетных поездов, угадав, что имеется оптимальное соотношение весов между отдельными ступенями составной ракеты, позволяющее достигнуть максимальной скорости. В 1929 г. Циолковский разработал теорию реактивных аэропланов, где утверждал, что за эрой аэропланов винтовых будет следовать эра аэропланов реактивных или аэропланов стратосферы . Кроме теоретических исследований, Циолковский дал основные конструктивные очертания жидкостных ракет дальнего действия, выступив в этой области техники пионером новых идей первостепенной важности. Он является основоположником теории космических полетов (космонавтики).  [c.71]

Большинство работ, связанных с цельнометаллическим дирижаблем, было выполнено с 1885 по 1892 г. Описание и расчет хорошо обтекаемого аэроплана с легким двигателем были опубликованы в 1894 г. С 1896 г. Циолковский систематически занимался теорией движения ракет и предложил ряд конструктивных схем ракет дальнего действия и ракет для межпланетных путешествий. В последние годы жизни он много и плодотворно работал над созданием теории полета реактивных самолетов и изобрел схему газотурбинного двигателя. Работы К. Э. Циолковского по аэродинамике, ракетной технике, дирижаблестроению и естественнонаучным вопросам из-  [c.78]

Теория полета двухступенчатой ракеты была разработана К. Э. Циолковским в 1926 г  [c.90]

Вопрос о реальном осуществлении межпланетных путешествий интересовал Циолковского с самого начала его самостоятельных научных изысканий. Наивные юношеские мечты, систематический анализ процессов простейших механических явлений в пространстве без действия сил (в свободном пространстве — по терминологии Циолковского), затем тш.ательная математическая разработка теории реактивного движения с подробным количественным анализом прямолинейных движений и, наконец, строгая теория полета многоступенчатой ракеты, ракеты грандиозной и приспособленной для перемеш,ения людей в космическом пространстве,— вот последовательные этапы творческих исканий Константина Эдуардовича, подготовившие научную почву для возникновения новой научной дисциплины — космонавтики, или, как иногда говорил Циолковский, звездоплавания.  [c.94]

Новый этап в развитии теории движения ракет начался с зарождения инженерных идей космического полета. В статье К.Э. Циолковского Исследование мировых пространств реактивными приборами (1903 г.) с помощью простых расчетов движения ракеты как точки переменной массы была обоснована возможность применения ракет для межпланетных полетов и заложена программа развития космонавтики и ракетостроения.  [c.78]

Изучая движение материальных тел под действием сил, можно выделить весьма важный класс задач динамики, характерных тем, что некоторые из действующих на объект сил могут быть запрограммированы и реализованы в процессе движения человеком-пилотом (или автопилотом). Часть сил, приложенных к движущемуся объекту, конечно, определена (детерминирована) природой, а часть может изменяться в широких пределах по некоторым законам, заложенным в конструкцию летательного аппарата. Так, при изучении движения ракеты в поле тяготения Земли гравитационная сила вполне детерминирована (она, в первом приближении, подчиняется закону тяготения Ньютона), а реактивная сила может изменяться и регулироваться как по величине, так и по направлению. Каждому закону регулирования реактивной силы будет соответствовать некоторый закон движения ракеты. В современной ракетодинамике и динамике самолета такие задачи часто на> зывают задачами с управляющими (или свободными) функциями. Если управляющие функции все заданы и, следовательно, сделаны определенными все действующие силы, тогда мы будем иметь дело с обычной задачей теоретической механики найти закон движения объекта, если действующие на него силы неизвестны. Но выбор (задание) свободных функций можно подчинить некоторым, достаточно общим и широким, условиям оптимальности (экстремальности) и производить определение динамических характеристик для этих классов оптимальных движений. Метод проб или сравнений, лежащий в основе классических вариационных принципов, применим и здесь, но варьируется выбор управляющих функций, а не траекторий в пространстве конфигураций. Задачи такого рода имеют большое практическое значение в динамике полета ракет и самолетов, а также в теории автоматического регулирования-  [c.14]

В этой главе книги исследуется методами вариационного исчисления ряд задач динамики полета ракет и самолетов с ракетными двигателями, причем выделяемые классы оптимальных движений допускают простые аналитические решения. Влияние малых изменений основных параметров обследуется в линейной постановке аналогично линейной теории рассеивания эллиптических траекторий баллистических ракет (ч. I, гл. III, стр. 265). Учитывая, что для многих преподавателей классической механики излагаемые здесь научные результаты могут представить интерес для самостоятельных исследований, мы даем достаточно ссылок на основные журнальные статьи и монографии. Мы убеждены, что в процессе развития науки и техники вычислительные машины будут решать все более сложные системы дифференциальных уравнений и метод проб, метод сравнения семейств решений можно будет применять к любому числу свободных функций. Однако в вузовском преподавании в стадии формирования интеллекта будущих исследователей и создателей реальных конструкций аналитические решения нельзя заменить численными методами.  [c.142]


Теоретическая механика является научной основой важнейших областей техники. Советскими учеными-механиками выполнены фундаментальные исследования по теории полета ракет, реа(аивиых самолетов, искусственных спутников Земли и космических кораблей.  [c.6]

Вынунчденный вести исследования в крайне тяжелых условиях материальной необеспеченности и равнодушия со стороны представителей официальных научных кругов царской России, он предложил математически строгую теорию полета ракет и теорию космических полетов, намного опередив аналогичные работы, выполнявшиеся за рубежом Р. Эно-Пельтри (Франция, 1913), Р. Годдардом (США, 1919), Г. Обертом и В. Гоманом (Германия, 1923—1925). Но настоящее признание его научных заслуг — международное признание, выраженное словами Оберта ... Вы зажгли огонь и мы не дадим ему погаснуть... ,— пришло лишь после Октябрьской революции, когда его исследовательская деятельность получила всемерную поддержку Коммунистической партии и Советского правительства. Умер он 19 сентября 1935 г. в Калуге, завещав за несколько дней до смерти все свои труды по авиации, ракетоплаванию и межпланетным сообщениям партии большевиков и Советской власти — подлинным руководителям прогресса человеческой культуры .  [c.411]

Предложил научное и техническое обосно вание конструкг ий цельнометаллического ди рижабля и хорошо обтекаемого самолета-моноплана с металлическим каркасом. Разработал теорию полета ракеты с учетом изменения ее массы, предложил теорию движения ракетных поездов — составных (многоступенчатых) рапетп и обосновал возможность приме-непия реактивных аппаратов для межпланетных полетов.  [c.412]

Дав научное обоснование теории полета ракет, разработав теорию прямолинейного реактивного движения тел иеременной массы, К. Э. Циолковский стал признанным основоположником ракетодинамикп.  [c.296]

Koro, полученные в теории полета ракет. Не приводя здесь подробных математических выкладок, которые можно найти в его оригинальных статьях, отметим лишь самые важные достижения ученого в данной области.  [c.85]

Рассказывая о К. Э. Циолковском, я обычно отмечаю своеобразие творческого почерка его исследований В самом деле, полеты ракет наблюдали многие и до Циолковского. История говорит нам, что первые фейерверочные ракеты были созданы в Китае более тысячи лет назад. Однако никто из строителей ракет, никто из многих миллионов людей, наблюдавших за фейерверками и праздничными запусками ракет, не пришел к построению новой науки — теории полета ракет. Хорошо известно также, что в XIX столетии пороховые ракеты были в центре внимания крупных военных специалистов (Конгрэв, Константинов и др.) и все же теории реактивного движения не было создано.  [c.241]

Основателем современной теории полета ракет (ракето-динамики) и теории межпланетных сообщений является замечательный русский ученый, добившийся разносторонних и глубоких знаний исключительно в результате упорного самостоятельного труда, К. Циолковский (1857—1935).  [c.15]

Уравнение (3.1) впоследствии трактовалось многими исследователями не всегда правильно. Об этом хорошо сказано в вьшуш енной в США в 1947 г. монографии Лж. Россера, Р. Ньютона и Лж. Гросса Математическая теория полета ракет . Излагая обилие теоремы механики применительно к реактивному движению ракет, авторы сформулировали следуюш ий принцип Обитая сумма внешних и реактивных сил, действуюш их на ракету, равна произведению массы ракеты на ускорение ракеты . Относительно этого принципа они сделали следуюш ее замечание Это звучит подозрительно похоже на закон Ньютона о том, что сила равна произведению массы на ускорение. Но этой причине этот принцип был одно время источником суш ественного недоразумения, поскольку множество исследователей формулировало этот принцип в форме, где обитая сила, действуюш ая на ракету, равна скорости изменения количества движения ракеты . Относительно недоразумения см. комментарии в конце 1.4 по поводу уравнений (1.28) и (1.29) и понятия силы.  [c.80]

Величина mJln называется отношением масс. Если к начальной скорости требуется добавить скорость, равную скорости истечения, то отношение масс при этом получится равным е --= 2,718.... Уравнение (11.2) является фундаментальным уравнением теории полета ракеты. Из него также видно, что при отношении масс, большем чем е 2,718, конечная скорость ракеты может превзойти скорость истечения.  [c.340]

I и принцип динамического программирования Р. Беллмана), методы рминального управления, методы решення краевых задач управления, своей прикладной части теория наведения опирается на методы 1наыики, баллистики и теории полета ракет и КА.  [c.255]

Строгая математическая теория многоступенчатых ракет, на основе которой проектируются современные межконтинентальные ракеты и ракеты-носители искусственных спутников Земли и космических кораблей, была разработана в 1926—1929 гг. К. Э. Циолковским. Первый вариант его составной ракеты ( ракетного поезда ) предусматривал последовательное расположение и последовательное действие соединенных между собой трех одиночных ракет. В таком поезде вначале работал двигатель нижней (хвостовой) ракеты. Израсходовав топливо, она отделялась от поезда и тогда начинал работать двигатель средней ракеты. После исчерпания топливного запаса она также отделялась от поезда и включался двигатель верхней (головной) ракеты, к тому времени уже получившей значительную скорость. Второй вариант ракетного поезда ( эскадрилья ракет ) отличался тем, что одиночные ракеты (например, четыре) должны были отправляться в полет работающими одновременно и скрепленными не последовательно, а параллельно. При израсходовании половины общего запаса топлива оставшаяся половина должна была переливаться из двух крайних ракет в полупустые емкости двух средних ракет затемопорожненные крайние ракеты отделялись от эскадрильи. В дальнейшем операция переливания топлива повторялась, и конечной цели полета достигала — как и в первом варианте — только одна ракета.  [c.416]

Процессы в системах телеконтроля, телеуправления, стабилизации и других, которые функционируют в комплексе приборов управления полетом ракеты, определяются весьма сложными уравнениями. Изучение процессов, описываемых такого рода уравнениями, сводится к ряду трудных задач теории автоматического регулирования.  [c.92]

Россер Д, Ньютон Р и Гросс Г, Математическая теория полета неуправляемых ракет, перевод с английского, Изд иностр лит, М, 1950  [c.390]


Смотреть страницы где упоминается термин Теория полета ракет : [c.437]    [c.461]    [c.296]    [c.35]    [c.552]    [c.306]    [c.390]    [c.231]    [c.543]    [c.235]    [c.425]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.409 , c.410 , c.414 ]



ПОИСК



Ракета



© 2025 Mash-xxl.info Реклама на сайте