Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Функция Лагранжа в главных координатах

В предыдущем изложении были отмечены те условия, при которых функция Гамильтона и обобщенные импульсы остаются постоянными при движении системы. Согласно одной точке зрения, постоянство импульсов является следствием того обстоятельства, что координаты оказываются циклическими главный результат здесь заключается в том, что соответствующие уравнения движения (Лагранжа или Гамильтона) можно сразу проинтегрировать. Согласно другой точке зрения, такое постоянство само по себе рассматривается как важное свойство системы. Последняя точка зрения широко распространена в наиболее важных приложениях данного метода к современной физике, и приемлемое решение задачи может состоять в определении всех интегралов движения. В общем смысле термин интеграл движения применяется к любой динамической переменной  [c.67]


Чтобы построить главную функцию, можно поступить следующим образом. Допустим сначала, что нам удалось найти интегралы уравнений движения Лагранжа, так что каждая координата является известной однозначной функцией от п переменных q a,  [c.274]

Присоединение временной координаты x к обобщенным координатам X ( =1, 2, 3), частицы существенно изменяет смысл вариационного принципа, из которого вытекают уравнения (2.133), так как теперь время, как и позиционные координаты, варьируется. Иначе говоря, вместо принципа Гамильтона — Остроградского применяется принцип Эйлера — Лагранжа [40]. Все координаты Ц=Ь 2, 3, 4) следует рассматривать как функции параметра 5, который не варьируется. Соответственно этому функция W вытекает из механического действия в форме Эйлера или Якоби и ее нельзя назвать главной функцией Гамильтона. Эта функция зависит от х и поэтому не является характеристической функцией Якоби [40]. Уравнение (2.134) аналогично уравнению Якоби, хотя содержит время как параметр. Чтобы в этом убедиться, заметим, что частные производ-  [c.62]

Нормальная форма линейной лагранжевой натуральной системы. Рассмотрим динамическую систему с квадратичноп функцией Лагранжа Ьг=Тг—Га О. Ее колебания выглядят особенно просто в специальных координата., которые называются главными или нормальными.  [c.268]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]


Возвращаясь опять к случаю тесной двойной, сопровождаемой удаленной третьей звездой, нетрудно видеть, что элементы орбиты спутника относительно главной звезды будут изменяться. Поскольку возмущающая функция задачи оказывается малой, можно использовать уравнения Лагранжа для построения общей теории возмущений, дающей изменения (коротко-, длиннопериодные и вековые) элементов орбиты. Преимущественно используются разложения, применяемые в теории Луны, что становится понятным, если напомнить, насколько полезными оказываются координаты Якоби как в теории Луны, так и в задаче трех тел.  [c.468]


Смотреть страницы где упоминается термин Функция Лагранжа в главных координатах : [c.13]    [c.769]    [c.97]    [c.85]    [c.65]    [c.235]    [c.392]    [c.394]    [c.130]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.275 ]



ПОИСК



Главная функция

Координаты Лагранжа

Координаты главные

Координаты лагранжевы

Функция Лагранжа



© 2025 Mash-xxl.info Реклама на сайте