Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Внутренние напряжения I, II и III рода

Различают внутренние напряжения трех родов.  [c.300]

Внутренние напряжения второго рода возникают внутри зерна или между соседними зернами.  [c.300]

Внутренние напряжения второго рода возникают между различными фазами вследствие того, что у них разные коэффициенты линейного расширения, или из-за образования новых фаз, имеющих разные объемы. Внутренние напряжения второго рода не зависят от тех факторов, от которых зависят напряжения первого рода, например скорости охлаждения и других факторов. Поскольку внутренние напряжения второго рода возникают между отдельными. элементами структур, их иногда называют структурными напряжениями, а внутренние напряжения первого рода — термическими напряжениями.  [c.300]


Внутренние напряжения третьего рода возникают внутри объема порядка нескольких элементарных ячеек кристаллической решетки.  [c.300]

Основным методом изучения и измерения внутренних напряжений является рентгенографический. Для определения напряжений первого рода применяют и механический метод.  [c.301]

Если исходная структура хорошая и нет необходимости в перекристаллизации, а требуется только снизить внутренние напряжения, то нагрев под отжиг ограничивают еще более низкими температурами, ниже критической точки. Это будет низкий отжиг (см. рис. 249). Очевидно, что эта операция относится к первой группе видов термической обработки (отжиг первого рода), тогда как полный и неполный отжиг относится ко  [c.309]

Все перечисленные дефекты кристаллического строения приводят к появлению внутренних напряжений. По величине объема, где они уравновешиваю гся,различают напряжения I, II и III рода.  [c.14]

Внутренние напряжения I рода - это зональные напряжения, возникающие между отдельными зонами сечения или между отдельными частями детали. К ним относятся термические напряжения, которые появляются при ускоренном нагреве и охлаждении при сварке, термической обработке.  [c.14]

Внутренние напряжения III рода - возникают внутри объема порядка нескольких элементарных ячеек главным источником являются точечные дефекты.  [c.14]

Термическая обработка, основанная на фазовой перекристаллизации, в первом случае называется отжигом второго рода, а обработка согласно второму случаю называется закалкой. Отжиг второго рода для систем сплавов, аналогичных рассматриваемой, применяют для перекристаллизации структуры сплава (наНример, после литья, ковки), уменьшения внутренних напряжений и прочности сплавов (например, перед обработкой резанием). Фазовая перекристаллизация при несколько ускоренном охлаждении (например, на воздухе) называется нормализацией. Этот вид обработки применяют в тех же случаях, что и отжиг однако нормализация может быть и оконча-тель 10Й термической обработкой, поскольку она вызывает некоторое повышение механических свойств сплава  [c.108]

Как известно, внутренние напряжения, возникающие в процессе нагрева и охлаждения детали, образуют равновесную систему и могут проявляться в виде макронапряжений, охватывающих крупные объемы детали (напряжения I рода), микронапряжений в пределах одного или нескольких кристаллических зерен (напряжения II рода) и субмикроскопических напряжений, действующих между эл ентами кристаллической решетки (напряжения III рода).  [c.73]


Все источники неоднородности способствуют созданию полей внутренних напряжений в микрообъемах материала, которые при одном виде напряженного состояния могут усиливать эффект воздействия внешних нагрузок, при другом — снижается эффект влияния внешних нагрузок. Факторы такого рода могут влиять на форму поверхности разрушения. При конструировании критерия прочности вида (4.5) учитывалось реальное строение промышленных сплавов и стали.  [c.139]

Условия механической стабильности и жизнеспособности пленок и пленочных структур. Из изложенного материала следует, что в пленках и покрытиях, нанесенных на жесткие подложки, практически всегда возникают внутренние напряжения. В качестве примера в табл. 2.1 приведен примерный уровень напряжений, который может формироваться в различного рода тонких слоях и покрытиях. Из данных табл. 2.1 видно, что в ряде случаев уровень внутренних напряжений в пленочных структурах и поверхностных слоях может быть очень высоким.  [c.85]

Нанесение тонкого гальванического покрытия хромом приводит к образованию трещин вследствие возникновения внутреннего напряжения. На исследованной под микроскопом поверхности с гальваническим покрытием хромом видна сетка трещин (подобная сетке трещин на покрытиях родием).  [c.47]

Внутренние напряжения 1-го рода, МПа  [c.176]

Повышение усталостной прочности связано с созданием в поверхностных слоях благоприятных остаточных внутренних напряжений. Принято различать три рода остаточных напряжений 1-го рода — напряжения, которые уравновешиваются в пределах детали или участка ее поверхности 2-го рода — напряжения, которые уравновешиваются в пределах отдельного зерна, и 3-го рода — напряжения, которые уравновешиваются в пределах кристаллической решетки. Усталостная прочность зависит от напряжений 1-го рода, именно их создает поверхностная пластическая обработка. Остаточные напряжения порождаются и термической обработкой и обработкой резанием. Однако получение остаточных напряжений не является целью указанных методов, они являются неизбежным, но побочным и часто нежелательным результатом воздействия нагрева и охлаждения при термической обработке, сил пластической деформации и нагрева при резании. При поверхностном пластическом деформировании в поверхностном слое формируются остаточные напряжения определенной величины и определенного знака. Обычно поверхностные слои деталей в работе испытывают напряжения растяжения.  [c.95]

Причины нестабильности геометрической формы, размеров и физико-механических свойств металлических деталей. Причинами нестабильности геометрических свойств металлических деталей в основном являются наличие и постепенная релаксация внутренних напряжений и структурная нестабильность. Так, например, непостоянство размеров некоторых деталей машин (специальных осей, подпятников и т. п.), имеющих простую форму и высокую твердость, определяется преимущественно структурным фактором. На стабильность размеров деталей типа корпусов, каркасов, тонкостенных обечаек и т. п., имеющих сложную форму, часто недостаточную жесткость, основное влияние оказывают остаточные внутренние напряжения. Остаточные внутренние напряжения подразделяются (в порядке убывающей значимости) на фазовые или структурные, тепловые (термические), первичные усадочные (в отливках), возникающие в результате механического наклепа и вследствие химического воздействия на поверхность детали. Существенное влияние на стабильность размеров могут оказывать микроскопические напряжения первого рода. Дополнительное влияние на размеры могут оказывать напряжения второго рода, уравновешивающиеся в масштабе отдельных зерен в тех случаях, когда микронапряжения обладают общей ориентировкой (т. е. не погашаются взаимно вследствие противоположной направленности).  [c.405]

Основным средством стабилизации структуры и уменьшения внутренних напряжений является отпуск, применяющийся как для закаленных, так и для термически неупрочненных, но наклепанных при механической обработке деталей. Вследствие нагрева при отпуске увеличивается подвижность атомов металла, облегчается их перегруппировка в более устойчивые фазы, понижается сопротивление микродеформации, которая способствует разрядке напряжений второго рода. Наиболее выгодно производить отпуск детали при высшей допустимой температуре нагрева, так как эффективность отпуска быстро возрастает с повышением температуры. Продолжительность выдержки имеет значительно меньшее значение. Так, например, отпуск стали в течение 15 мин при температуре 450° С примерно эквивалентен отпуску в течение 10 ч при температуре 300° С отпуск при температуре 650° С в течение 15 ч — отпуску в течение 150 ч при температуре 550° С.  [c.409]


При применении обработки холодом резко повышается стойкость притирочных плиток. Искажение плоскости притирочных плиток является следствием искажения во времени из-за снятия внутренних напряжений и искажения износа из-за неоднородной твёрдости. Решающее значение имеет искажение первого рода. Применение обработки холодом снимает  [c.533]

Трещины в основном металле, расположенные перпендикулярно к сварному шву и рядом с ним (рис. 8.12, г), появляются из-за неравномерного сжатия элементов конструкции из легированной стали, принимающей закалку в зоне отжига. Сосредоточение местных внутренних напряжений вызывает при эксплуатации возникновение подобного рода трещин на основном металле. Трещины завариваются, как указывается на рисунке.  [c.324]

Процессы термической обработки принято подразделять на собственно термическую обработку, включающую только тепловое воздействие термомеханическую, сочетающую тепловое воздействие с пластическим деформированием, и химико-термическую, подразумевающую тепловое воздействие с изменением химического состава поверхности металлов и сплавов. В свою очередь, собственно термическая обработка включает отжиг 1 рода (гомогенизационный, рекристаллизационный, для снятия внутренних напряжений, называемый иногда релаксационный), отжиг II рода, закалку с полиморфным превращением, отпуск, закалку без полиморфного превращения, старение.  [c.486]

Для снятия внутренних остаточных напряжений и предотвращения образования трещин после операций восстановления изношенных деталей, если эти операции сопровождались значительными тепловложения-ми в деталь в неравновесных условиях (сварка, наплавка и т.п.), необходим отжиг I рода. При этом, особенно для легированных сталей, склонных к образованию неравновесных закалочных структур и повышенной хрупкости, отжиг I рода для снятия внутренних напряжений проводят безотлагательно после сварочных или наплавочных операций.  [c.498]

При восстановлении изделий путем нанесения гальванических покрытий возникают внутренние 1 рода или остаточные напряжения, что может привести к растрескиванию или отслаиванию покрытий от основы.  [c.502]

Мы считаем, что в рассматриваемом случае основными причинами, вызывающими появление внутренних напряжений, являются искажения кристаллической решетки и отдельных зерен (искажения II и III рода), происходящие в процессе электрокристаллизации покрытия.  [c.92]

Установлено, что остаточные внутренние напряжения в основном зависят от 1) искажения кристаллической решетки 2) искажения зерен (кристаллов) 3) различного рода включений в осадок.  [c.97]

Внутренние напряжения первого рода — это зонал1Л1ые внутренние напряжения, возникающие между отдельными зонами сечения п между различными частями детали. Чем больше градиент температур по сечению, возникающий при термической обработке и между различными частями детали, который зависит от скорости и равномерности охлаждения, размера детали и ряда других причин, тем большего значения достигают внутренние напряжения первого рода.  [c.300]

Внутренние напряжения первого рода, влияние которых особенно существенно, так К31К только они вызывают коробление детали п трещины, зависят не только от внешних факторов (скорость охлаждения, размер и форма детали н т. д.), но и от свойств металла. Если металл обладает малой пластичностью, то возникающие внутренние напряжения не разряжаются пластической деформацией, и если напряжения по величине превзойдут значение предела прочности, то возникнут трещины.  [c.301]

Как видно из предыдущего, деление на напряжения первого, второго и третьего родов является условным. Все они тесно переплетаются друг с другом и могут быть местными, зональными и общими. Для практических целей существенно, что внутренние напряжения могут действовать разупрочняюще и упрочняюще. Опасны напряжения того же знака, что и рабочие, например разрывающие напряжения в случае растяжения. Благоприятны напряжения, знак которых противоположен знаку рабочих, например сжатия в случае растяжения. Следует отметить, что внутренние напряжения одного знака всегда сопровождаются Появле нием в смежных объемах уравновешивающих напряжений противоположного знака относительная величина напряжений разного знака зависит от протяженности охватываемых ими объемов. Таким образом, опреде-ляющихг для прочности является, во-первых, расположение и ориентация напряженных объемов относительно действующих рабочих напряжений и, во-вторых, величина внутренних напряжений, одноименных и одинаково направленных с рабочими напряжениями. Неоднородности, создающие очаги повышенных разрывающих напряжений, нарушающие сплошность металла, вызывающие появление трещин и облегчающие местные пластические сдвиги, являются дефектами металла. Неоднородности, создающие общирные зоны сжимающих напряжений, способствующие уплотнению металла и препятствующие возникновению и распространению пластических сдвигов, являются упрочняющими факторами.  [c.153]

Внутренние напряжения П рода - возникают внутри зерна или между соседними зернами, обусловлены дислокационной стручаурой металла.  [c.14]

Фазовые превраи(ения в металлах и сплавах всегда сопровождаются возникновением внутренних напряжений второго рода, что связано с увеличением или уменьшением плотности вещества при пере-в фазовое состояние. В перлите напряжения этого про-  [c.42]

Родий получил распространение благодаря своей высокой отражательной способности, а также твердости, износостойкости и большой химической стойкости в агрессивных средах. Причем отражательная способность родия, в отличие от серебра, не изменяется при действии на металл сернистых соединений. Коррозионные испытания на перепад температур, высокую влажность и 3 %-ный раствор Na l также показали хорошую стойкость родиевых покрытий. Родий обладает не только высокой микротвердостью, но и сильными внутренними напряжениями (вследствие склонности поглощать водород).  [c.62]


Родий обладает самой высокой отражательной способностью из всех платиновьис металлов. Коэффициент отражения родия в видимой части спектра несколько ниже, чем у серебра, но в ультрафиолетовой части практически не изменяется в атмосфере сернистых соединений и повышенной влажности. Коррозионные испытания родиевых покрытий при периодическом изменении температуры и влажности среды, а также в 3 %-ном растворе поваренной соли показали их высокую стойкость. Микротвердость электролитического родия в 8—10 раз выше, чем полученного металлургическим путем,— это связано с получением мелкозернистого покрытия, а также с включением водорода в осадок, что определяет высокие внутренние напряжения, которые приводят к возникновению сетки трещин. Удельное электрическое сопротивление родия значительно ниже, чем  [c.75]

Механизм микроскопического разрушения можно представить следующим образом. В случае вязкого разрушения образование микротрещин подготавливается в процессе пластической деформации. Пластическая деформация приводит к зарожцению очагов разрушения как за счет образования разного рода дефектов, способствуювдих разрыхлению металла (ослабление межатомных сил связей), так и за счет высоких внутренних напряжений, возникающих вследствие неоднородного протекания пластической деформации. Таким образом, питастическая деформация повышает возможность преодоления внутренних сил связей, существующих в твердом теле, нормальными напряжениями растяжения. В случае вязкого разрушения образование микротрещин подготавливается в Г роцессе пластической деформации действием касательных напряжений. При значительных пластических деформациях силы сцепления на площадках скольжения из-за разрыхления материала снижаются и в предельном случае можно предположить, что разрушение есть результат действия касательных напряжений.  [c.133]

Специальные гальванические покрытия драгоценными металлами. Гальванические покрытия платиной, родием и рутением используются для создания высококачественных декоративных свойств, а также в электротехнике и электронике. Из-за стоимости этих материалов и высоких внутренних напряжений в осадках родия и рутения, вызывающих самопроизвольное тре-щинообразование, толщина осадка ограничена до нескольких микрометров. Инертность всех трех металлов способствует их устойчивости к воздействию коррозии.  [c.98]

Цементация поверхности, повышающая прочность и твердость поверхностного слоя и создающая там сжимающие внутренние напряжения 1-го рода, увеличивает сопротивление усталости. Сочетание цементащ1и понерхности с последующей термообработкой (высокий отпуск) существенно повышает предел усталости углеродистых и легированных сталей в атмосфере и слабо агрессивных средах. Анапогичный эффект получается и при азотировании поверхности углеродистых сталей. Установлено, что сульфидирование и сульфоцианирование деталей также зна чительно повышает их коррозионно-механическую стойкость В некоторых случаях коррозионно-механическая стойкость ста лей повышается борированием их поверхности. Коррозионно-ус талостная прочность стали возрастает й после силицирования 71]  [c.122]

Внутренние напряжения покрытий (1-го рода) определяли методом гибкого катода с закрепленным нижним концом иа покрытиях, осажденных на отожженных и анодно-травленных в H2SO4 (1 1) пластинках из железа Армко. Одну сторону образца изолировали лаком БФ-4. Отклонение образца во время электролиза фиксировали по градуированной шкале,  [c.176]

Кроме того, при наиболее распространенном методе определения износа — микрометраже деталей — не учитывается так называемый отрицательный износ , выражающийся в изменении геометрических размеров чугунных отливок после ликвидации внутренних напряжений. При замере микрометром износа таких деталей, как цилиндры двигателей, иногда приходится встречаться с весьма странным явлением, когда диаметр замеряемого цилиндра не увеличивается после работы двигателя и износа, а, наоборот, уменьшается. Происходит это от ликвидации разного рода напряжений в поверхностном слое, возникающих в результате механической и термической обработки деталей.  [c.65]

Минимум износа отмечается в этих испытаниях при небольших (2—5%) величинах пластической деформации сжатия, тогда как во всех случаях деформации растяжения и при больших (выше 5—10%) деформ циях сжатия износ увеличивался по сравнению с износом недеформированной стали. Снижение износа при деформации сжатием наблюдается тем большее, а минимум обозначается при тем более высоком значении величины деформации, чем больше количество углерода в стали. В свете результатов испытаний на износ в упругой стадии деформации влияние наклепа растяжением и сжатием на износоустойчивость сталей, пластически деформированных, должно быть объяснено как следствие скольжений в зерн.х феррита и перлита и как результат возникновения внутренних напряжений второго рода. Остаточное внутреннее напряжение второго рода между зернами перлита и феррита оказывает влияние, аналогичное влиянию напряжений от внешних сил.  [c.238]

Держание каждой из этих примесей ограничивается 0,02—0,06 %. Аналогично, но в меньшей степени, на свойства влияют железо и кремний. Особо вредная примесь в титане и однофазных а-сплавах титана — водо-Род. При наличии водорода по грани-Цам зерен выделяются тонкие хрупкие Пластины гидрпдной фазы, вызывая значительную хрупкость (табл. 48). водородная хрупкость наиболее опасна Сварных конструкциях из-за нали-в них внутренних напряжений. Допустимое содержание водорода в хническом титане и однофазных спла-находится в пределах 0,008— 012 % (табл. 49).  [c.293]

Основными параметрами ручных машин являются потребляемая мощность, для электрических машин - напряжение, род, сила и частота тока для пневматических машин - рабочее давление сжатого воздуха. Единой системы индексации ручных машин не существует. Индексы определяют разработчики машин и их изготовители. Наиболее широко используют индексы, состоящие из буквенной и цифровой частей. Первой буквой И обозначают все ручные машины ( механизированный инструмент ), вторая буква обозначает вид привода Э - электрический, Г - гидравлический, П - пневматический, Д - от двигателя внутреннего сгорания. Первая цифра цифровой части индекса обозначает группу машин 1 - сверлильные, 2 - шлифовальные, 3 - резьбозавертывающие, 4 - ударные, 5 - фрезерные, 6 - специальные и универсальные, 7 - многошпиндель-ные, 8 - насадки и головки инструментальные, 9 - вспомогательное оборудование, 10 -резервная группа. Вторая цифра обозначает исполнение машины О - прямая, 1 - угловая, 2 - многоскоростная, 3 - реверсивная. Последними двумя цифрами обозначают номер модели. Буквы после цифр обозначают очередную модернизацию. Например, индекс ИЭ-1202А расшифровывается как ручная электросверлильная многоскоростная машина второй модели, прошедшая первую модернизацию.  [c.340]

Так, например, повышение температуры электролита с 85 до 95°С способствует увеличению предела усталости с 22,7 до 28,02 кг/см , а уменьшение катодной плотности тока с 20 до 10 а/дм приводит к увеличению предела усталости с 23,2 до 29,01 кг/мм-(табл. 18). Таким образом, подводя итоги исследований, мы пришли к выводу, что усталостная прочность железных покрытий в основном зависит от условий электрокристаллизации. В тех случаях, когда катодная поляризация сравнительна невелика, что способствует нормальному протеканию процесса электрокрчсталли-зации, покрытия получаются с меньшими внутренними напряжениями и с большим пределом усталости. Кроме того, на величину усталостной прочности покрыт оказывают большое влияние различного рода включ ния (углеродосодержащие вещества, водород и д[  [c.120]



Смотреть страницы где упоминается термин Внутренние напряжения I, II и III рода : [c.305]    [c.88]    [c.130]    [c.22]    [c.161]    [c.18]    [c.487]    [c.26]    [c.26]    [c.26]   
Металловедение и термическая обработка (1956) -- [ c.0 ]



ПОИСК



I рода

I рода II рода

Влияние условий электролиза на внутренние напряжения и структуру железных покрытий Влияние условий электролиза и температуры нагрева железных покрытии на развитие искажений II и 111 рода

Внутренние напряжения

Внутренние напряжения I, II и III рода методы рентгеноанализа

Напряжения внутренние Влияние второго рода — Причины возникновения

Родан

Родиан

Родий

Родит



© 2025 Mash-xxl.info Реклама на сайте