Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент давления газов

Температурный коэффициент давления газа. Температурный коэффициент 3 давления газа — величина, равная отношению относительного изменения давления газа к изменению его температуры  [c.53]

Корни — Преобразование 75 — Свойства 76 --квадратные из чисел — Таблицы 45, 65 — — кубические из десятичных дробей — Таблицы 39, 65 - кубические из чисел—Таблицы 45, 65 Корсетность — Контроль 456 Косинус — Таблицы 90 Косинусов теорема 114 Котангенс —Таблицы 90 Коэффициент давления газов 183  [c.593]


В большинстве твердых и жидких тел поглощение тепловых лучей завершается в тонком поверхностном слое, т. е. не зависит от толщины тела. Для этих тел тепловое излучение обычно рассматривается как поверхностное явление. В газе в силу значительно меньшей концентрации молекул процесс лучистого теплообмена носит объемный характер. Коэффициент поглощения газа зависит от размеров ( толщины ) газового объема и давления газа, т. е. концентрации поглощающих молекул.  [c.91]

Большим шагом вперед в деле улучшения осветительной техники явилось предложение Лэнгмюра (1913 г.) наполнять баллоны ламп нейтральным газом, например азотом или, еще лучше, аргоном давление газа достигает примерно /3 ат, и присутствие его сильно замедляет распыление волоска, что позволяет увеличить температуру нити до 3000 К и больше без заметного сокращения срока службы лампы (около 1000 час). При этом сильно повышается световая отдача. Однако общий коэффициент полезного действия лампы равен отношению энергии полезной части спектра к общей энергии, питающей лампу, т. е. приходится учитывать не только потери на невидимое излучение, но также на теплопроводность и конвекцию. Последние виды потерь сильно увеличиваются при заполнении колбы лампы газом, так что газонаполненные лампы в смысле увеличения к. п. д. не имели бы преимущества перед пустотными, хотя свет их был бы приятен для глаз, ибо он ближе подходит к составу дневного ( белого ) света. Уменьшения потерь на охлаждение можно достигнуть, заменив прямой волосок тонкой спиральной нитью, отдельные витки которой обогревают друг друга. Именно так и осуществляются современные экономические лампы накаливания, к. п. д. которых значительно выше, чем у пустотных ламп.  [c.708]

Коэффициент теплопередачи. Рассмотрим вопрос о теплообмене между потоками жидкости или газа, разделенными стенками (обычно металлическими), как, например, в теплообменнике Линде, где наружные стенки трубок низкого давления омываются газом высокого давления газа. Движение газа или жидкости будем считать установившимся.  [c.101]

Определение величин углов а и Р выполнялось следующим образом. Подбирая длину камеры смешения 5 при постоянном диаметре сопла и постоянном диаметре = 27 или 23 мм, добивались максимальной величины КПД р процесса эжекции газа жидкостью. При подборе оптимальной длины камеры смешения устанавливалось одно из сопел, диаметры которых были перечислены выше. Оптимальную длину камеры смешения подбирали для каждого режима нагнетания жидкости, т.е. для каждого фиксированного давления от 0,9 до 2,4 МПа через каждые 0,1 МПа при практически постоянном давлении эжектируемого газа, которое находилось в пределах от 0,098 до 0,102 МПа. При меньших давлениях газа эксперименты не выполнялись из-за резкого снижения коэффициента эжекции и, как следствие, снижения КПД. Подобрав оптимальную длину камеры смешения для данного режима работы струйного аппарата, определяли расстояние от среза сопла до места, в котором струя касается стенок камеры смешения - сечение 1-1 рис. 8.1, а.  [c.189]


Для того чтобы определить полное давление газа в выходном сечении, в данном случае можно воспользоваться соотношением р = ( з) = 1,01-10 /0,6048 = 1,68-10 Н/м , которое справедливо при %з < 1, т. е. при Рз = Рн. Зная р, вычисляем коэффициент сохранения полного давления а = р /р = 1,68-10 /1,94-10 = 0,865.  [c.251]

Вторым характерным геометрическим параметром эжектора является степень расширения диффузора / = Р Рг — отношение площади сечения на выходе из диффузора к площади на входе в него. Если эжектор работает при заданном статическом давлении на выходе из диффузора, например при выхлопе в атмосферу или в резервуар с постоянным давлением газа, то степень расширения диффузора / существенно влияет на все параметры эжектора. С увеличением / в этом случае снижается статическое давление в камере смешения, растет скорость эжектирования и коэффициент эжекции при не очень значительном изменении полного давления смеси. Разумеется, эго справедливо лишь до того момента, когда в каком-либо сечении эжектора будет достигнута скорость звука.  [c.504]

Из графиков на рис. 9.20 и 9.21 видно, что степень расширения сверхзвукового сопла существенно влияет на эффективность эжектора, в особенности при малых значениях коэффициента эжекции. Максимальное значение полного давления газов полу-  [c.537]

Будем рассчитывать эжектор для работы на наивыгоднейшем критическом режиме. Ввиду того, что отношение полных давлений газов По = 12 достаточно высокое, а коэффициент эжекции небольшой, здесь целесообразно подобрать оптимальное сверхзвуковое сопло для эжектирующего газа. Для полного расширения эжектирующего газа сопло должно быть спроектировано на отношение давлений (к = 1,4).  [c.550]

В изоэнтропическом потоке газа коэффициент давления  [c.31]

Бойля сначала смещается в сторону больших давлений, а затем в сторону меньших давлений. При некоторой температуре, называемой температурой Бойля, минимум на изотерме совпадает с осью ординат (р = 0). Показать, что при температуре Бойля второй вириальный коэффициент реального газа равен нулю.  [c.35]

Таким образом, парциальные давления газов при равновесии связаны между собой определенным соотношением, о соотношение и является выражением закона действующих масс, по которому отношение произведений парциальных давлений исходных веществ и продуктов реакции, взятых в степенях, равных их стехиометрическим коэффициентам в уравнении реакции, при постоянной температуре, есть величина постоянная. Оно называется константой равновесия химической реакции по парциальным давлениям — /Ср.  [c.211]

Рис. 6.1. Зависимость коэффициента сжимаемости газов от давления р (при Рис. 6.1. Зависимость <a href="/info/30089">коэффициента сжимаемости газов</a> от давления р (при
Следовательно, коэффициент вязкости идеального газа не зависит от давления газа с температурой Т1 изменяется, как Т (так как ы)р г Г).  [c.206]

Коэффициент теплопроводности идеального газа не зависит, так же как и коэффициент вязкости, от давления газа и пропорционален корню квадратному из температуры. Поделив выражение для X на т], получим  [c.207]

При высоких давлениях X зависит от давления. В табл. 15.4 приведены зависимости теплопроводности некоторых газов от давления. При низких давлениях, когда длина свободного пробега молекул сравнима с размерами сосуда (для большинства систем при р<10 Па), теплопроводность пропорциональна давлению газа и стремится к нулю с уменьшением давления. В этих условиях теплопроводность определяется не только свойствами газа, но и энергообменом на границах, который характеризуют коэффициентом аккомодации.  [c.339]

Определить диаметр газопровода, транспортирующего 600 ООО м газа в сутки от скважины к коллектору, если длина газопровода 800 м, давление на головке скважины 68 ат, давление в коллекторе 30 ат, относительная плотность газа 0,64, коэффициент сжимаемости газа 0,9 температура газа 22° С.  [c.63]


Определить давление в начале газопровода, необходимое для того чтобы перекачать 12 ООО ООО м /сутки газа на расстояние 200 км. Относительная плотность газа по воздуху 0,61 температура газа 20° С, коэффициент сжимаемости газа 0,89. Давление в конечной точке газопровода = 3 ат, диаметр газопровода 508 мм.  [c.63]

Относительная плотность газа 0,6 температура газа 18° С, коэффициент сжимаемости газа 0,9. Давление в начальной точке газопровода Pi — 50 ат.  [c.63]

Такой вид задних кромок исключает воздействие вихревой пелены за крылом на его обтекание. Однако необходимо учитывать влияние боковых кромок на течение газа в областях крыла, ограниченных соответствующими линиями Маха и этими кромками. Три области /, II, III, в каждой из которых расчет коэффициента давления ведется по соответствующим формулам, показаны на рис. 8.23.  [c.235]

На рис. 10.12 показано распределение коэффициента давления около трех тел вращения (а, б, в), обтекаемых сверхзвуковыми потоками газа под углом атаки а = 0. Охарактеризуйте по этому распределению давления соответствующую форму головных частей каждого из этих тел.  [c.480]

Этот коэффициент характеризует влияние частиц на давление газа на теле, причем, согласно (4.7.42) н (4.7.44),  [c.384]

На рис. 4.7.3 приведены в качестве примеров распределения давления газа, определяемого коэффициентом Р.  [c.386]

Коэффициенты теплопроводности газов при повышении температуры возрастают. Опытные исследования показывают, что к газоз изменяется от 0,05 до 0,6 вт1м-град. От давления коэффициенты теплопроводности газов практически не зависят.  [c.351]

Жидкости содержат растворенные газы, количество которых в равновесных условиях зависит от свойств жидкости и газа, а также от давления и температуры. Зависимость равновесной концентрации z растворенного газа в жидкости от давления для слаборастворимых газов выражается законом Генри z = А (t)p, где р - парциальное давление газа над раствором A(t) -коэффициент пропорционапьности, зависящий от свойств жидкости и газа, а также от температуры. Для большинства жидкостей А (f) уменьшается с увеличением температуры. Очень часто растворимость газа в жидкости характеризуют с помощью коэффициента абсорбции Бунзена а, который равен объему газа, приведенному к О с и 760 мм рт. ст., поглощенному единицей объема жидкости при парциальном давлении газа, равном 760 мм рт. ст. В табл. 2.2 в качестве примера приведены данные о коэффициенте абсорбции для кислорода.  [c.27]

Для углов расширения пограничного слоя а и сужения потенциального ядра струи Р были получены по две зависимости от давления нагнетания жидкости Р при практически постоянном давлении газа на входе струйного аппарата Р = onst. Величины углов а и Р возрастают с увеличением давления нагнетания жидкости Р от 0,9 до 2,4 МПа при давлении эжектируемого воздуха = 0,098-0,102 МПа. Причем величины углов расширения пограничного слоя а, полученные в аппарате с камерой смешения 27 мм, больше величин а, полученных в аппаратах с камерой смешения 23 мм. А величины углов сужения потенциального ядра р, полученные в аппаратах с камерой смешения 27 мм, меньше величин Р, полученных в аппаратах с камерой смешения 23 мм. В связи с этим возник вопрос какова причина этих рассуждений Для его решения на график рис. 8.8 нанесли максимальные величины КПД Т], а на график рис. 8.9 соответствующие этим КПД величины коэффициентов эжекции (Уд, полученные из экспериментальных характеристик струйных течений в аппаратах с камерами смешения диаметром 27 и 23 мм.  [c.193]

Суть данного явления состоит, видимо, в следующем. Турбулентная струя жидкости, эжектирующая газ, имеет небольшие углы расширения пограничного слоя и потенциального ядра (см. рис. 8.35). В связи с этим, для того чтобы захватить из окружающего пространства газ в количестве, равном количеству газа, захватываемому струей кавитирующей жидкости, турбулентной струе необходимо пройти довольно бол1>шое расстояние от выхода сопла. Кавитационная струя за счет того, что она состоит в основном из парожидкостной смеси с очень низким статическим давлением, интенсивно захватывает газ из окружающего пространства, имеющего более высокое давление, чем статическое давление в струе кавитирующей жидкости. Газ под действием разности давлений проникает внутрь струи, замещая внутри нее пар. Скорость проникновения газа внутрь струи довольно высока. Не величина, сщененная из выражения (4.2.3) после подстановки в него экспериментальных величин давления газа = 0,01 МПа и давления в струе Р = 0,004 МПа, при = 0,3 составляет порядка 200 м/с. Имея такую скорость, газ проникает внутрь струи и полностью замещает в ней пар на расстоянии порядка 0,2 мм от выхода сопла. Количество газа, заместившего пар, т.е. захваченного струей кавитирующей жидкости, рассчитанного из выражения (5.15) и представленного в виде коэффициента эжекции, равно U 1 = 4,2143, что составляет 88% от всего захваченного струей газа (см. рис. 8.36). Это подтверждает вывод о том, что модель процесса эжектирования низконапорной среды сгруей кавитирующей жидкости качественно и количественно верно отражает протекание данного процесса.  [c.212]

Рис. 9.27. Зависимость величины коэффициента (2.4.10) изменения энтальпии газа в слое столкновения от давления исходного газа P и от степени расширения P IP (давление газа, истекающего из полузамкну гой емкости) Рис. 9.27. Зависимость величины коэффициента (2.4.10) <a href="/info/485523">изменения энтальпии</a> газа в слое столкновения от <a href="/info/409660">давления исходного</a> газа P и от степени расширения P IP (<a href="/info/190167">давление газа</a>, истекающего из полузамкну гой емкости)

Пример 3. На участке цилиндрической трубы между двумя сечениями i и 2 в результате гидравлических потерь (трение, местные сопротивления) снижается полное давление движущегося газа. Потери полного давления между сечениями 1 а 2 оцениваются величиной коэффициента сохранения полного давления а = р /р < 1. Определить характер изменения скорости и статического давления газа в трубе при отсутствии теплообмена с вяещней средой. Запишем, воспользовавшись формулой (109), условие равенства расходов газа в сечениях i и 2  [c.239]

Сопла п диффузор эжектора ппчем не отличаются от обычных сопел и диффузоров, расчет которых изложен в гл. VIII. При определении параметров эжектора существенны лишь коэффициенты сохранения полного давления газа в этих устройствах, позволяющие по начальным давлениям смешивающихся газов найти полные давления на срезе сопел р- и и по полному давлению смеси Рз — полное давление на выходе из диффузора р. Эти коэффициенты выбираются по экспериментальным данным в зависимости от формы сопел и диффузора и величины скорости потока.  [c.505]

Рис. 9.14. Зависимость отношения полных давлений газов, при вает наибольшее полное давление котором происходит запираме смеси газов, а при заданном полном давлении имеет наибольший коэффициент эжекции. Это связано с тем, что при критическом режиме разность скоростей газов на входе в камеру смешения wi — W2 становится минимально возможной наименьшей величины достигают и потери при смешении (см. (2)). Одновременно эжектор, рассчитанный для работы на критическом режиме, будет при заданном значении п иметь наименьшие относительные размеры смесительной камеры, т. е. наибольшее значение а. Рис. 9.14. Зависимость отношения <a href="/info/2444">полных давлений</a> газов, при вает наибольшее <a href="/info/2444">полное давление</a> котором происходит запираме смеси газов, а при заданном <a href="/info/2444">полном давлении</a> имеет наибольший <a href="/info/31274">коэффициент эжекции</a>. Это связано с тем, что при критическом режиме <a href="/info/106157">разность скоростей</a> газов на входе в <a href="/info/31254">камеру смешения</a> wi — W2 становится минимально возможной наименьшей величины достигают и потери при смешении (см. (2)). Одновременно эжектор, рассчитанный для работы на критическом режиме, будет при заданном значении п иметь наименьшие <a href="/info/4496">относительные размеры</a> <a href="/info/205496">смесительной камеры</a>, т. е. наибольшее значение а.
Кривая, соединяющая предельные точки кривых По = onst, является линией критических режимов. Реальными являются лишь режимы, соответствующие области характеристики между зтой линией и осями координат. С увеличением отношения давлений По критическая линия приближается к оси ординат и при некотором значении Потах пересекается с ней. Эта точка, в которой коэффициент эжекции равен нулю, а степень повышения давления достигает максимально возможного для данного эжектора значения, соответствует режиму запирания эжектора. Изменение режима работы реального эжектора может происходить олее сложньш образом, с одновременным изменением как полных давлений газов на входе, так и давления на выходе, и определяется выбранным способом регулирования режима. Смещение lo iifit, соответствующей рабочему режиму, на поле характеристик эжектора в каждом случае может быть определено расчетом по методу, изложенному в 3.  [c.527]

Точка В характеристики соответствует такому режиму, когда в сечении запирания эжектируемый поток становится звуковым (А,2 = 1). После этого, действительно, дальнейшее снижение противодавления не изменяет расхода газов через эжектор. Постоянные предельные значения, не зависящие от противодавления, принимают коэффициент эжекции п и параметры смеси газов — приведенная скорость Лз и полное давление Pg. В случае дозвукового течения (Лз < 1) при этом был бы постоянным коэффициент сохранения полного давления в диффузоре a = /( a),. а следовательно, и полное давление газа на выходе из диффузора Pi = ОдРз. Другими словами, все режимы работы эжектора, соответствующие противодавлению, меньшему критического значения, при Яз < 1 выражались бы одной точкой характеристики S(p4 = onst, и = onst). Однако экспериментальные данные показывают, что характеристика эжектора не обрывается в точке В снижение противодавления на критическом режиме всегда приводит к падению полного давления смеси при постоянном значении коэффициента эжекции (ветвь ВС). Легко убедиться, что это возможно только при сверхзвуковой скорости потока на входе в диффузор. Действительно, при Яз > 1 диффузор работает  [c.531]

Расчеты, однако, показывают, что наивыгоднейшие параметры эжектора получаются при степени расширения сопла, заметно меньшей расчетного значения. На рис. 9.20, 9.21 приведены расчетные кривые Ю. Н. Васильева, показывающие изменение полного давления смеси газов (Яз < 1) в зависимости от выбранной величины приведенной скорости эжектирующего газа в выходном сечении сопла при постоянных значениях коэффициента эжекции и отношения полных давлений газов. Кривые п = onst соответствуют, таким образом, эжекторам с одинаковыми начальными параметрами и расходами газов, но с различной степенью расширения сверхзвукового сопла эжектирующего газа. Значение 1=Хр1 соответствует расчетному сверхзвуковому соплу (для По = 10, Яр1 = 1,85 для По = 50, Кх = 2,09).  [c.537]

Представим теперь, что для заданного эжектора (для фиксированных значений геометрических параметров а п /) при сохранении полных давлений газов Pi, и давления на выходе изменится отношение температур торможения 0. Согласно основным уравнениям при этом произойдет изменение коэффициента эжекцпи  [c.544]

Согласно приближенной формуле (44) полное давление смесп при заданных начальных давлениях газов и постоянных размерах эжектора не зависит от относительного расхода эжектируе-мого газа. Это практически совпадает с данными точной характеристики эжектора (рис. 9.16), которая показывает, что полное давление смеси весьма мало изменяется с увеличением коэффициента эжекции п, несмотря на то, что количество энергии эжектирующего газа, приходящееся на единицу расхода эжектп-руемого газа, при этом уменьшается во много раз.  [c.546]

При малых значениях числа Маха (М1 < 0,3) величина скорости набегающего потока газа не оказывает заметного влияния на характер распределения давления по профилю. Коэффициенты давления р на профиле остаются практически такими же, как в несжимаемой жидкости. Увеличение скорости приводит к уменьшению минимального давления и соответственно к росту максимального числа Маха на профиле. Хотя при больших значениях М1 (М1 > 0,3) эпюра коэффициентов давления и величина ртш изменяются, но по-прежнему увеличение скорости набегающего потока приводит к росту максимального числа Маха. В результате при некотором критическом значении числа Маха набегающего потока (М1 = М1 р) максимальная скорость на профиле становится равной местной скорости звука, т. е. Мпих = 1,0. При этом минимальное давление достигает своего критического значения  [c.30]

Поэтому из (49) и (52) получаем следующие приближенные формулы Прандтпя — Глауэрта, позволяющие определить коэффициенты давления и подъемной силы данного профиля в потоке газа по известным их значениям для этого профиля в потоке несжимаемой жидкости  [c.34]

Экспериментально определяемый интегральный коэффициент поглощения йоо обычно выражается в единицах [ом ] или [см ]. Для того чтобы измеренный коэффициент поглощения коо можно было сравнить с теоретической формулой (3.24), его выражают в абсолютной шкале интенсивностей, в которой он имеет размерность [см -1Молек -с ]. Тогда интегральный коэффициент поглощения абс, относится к одной молекуле исследуемого вещества. Для индивидуальной жидкости абс[см2-молек Х X ]=k [ ш ] M/Np, для раствора абс[см2-молек -с ] = = коо[си ЦсМ1суЫр и для саза абс[см -молек -с ] = = коо[см-Ц RT/Np, где с — скорость света, М — молекулярный вес, р —плотность жидкости, N — число Авогадро, — объемная концентрация, R — газовая постоянная, Т — абсолютная температура, р— давление газа.  [c.107]


Таблица 17.2. Коэффициент самодиффузии газов при высо <их температурах, см с (давление атмосферное теоретические данные получены с использованием потенциала межатомного взаимодействия, восстановленного Таблица 17.2. <a href="/info/107220">Коэффициент самодиффузии</a> газов при высо <их температурах, см с (<a href="/info/2442">давление атмосферное</a> теоретические данные получены с использованием <a href="/info/383399">потенциала межатомного</a> взаимодействия, восстановленного

Смотреть страницы где упоминается термин Коэффициент давления газов : [c.81]    [c.79]    [c.250]    [c.437]    [c.22]    [c.36]    [c.72]    [c.526]    [c.527]    [c.7]   
Справочник металлиста Том 1 (1957) -- [ c.183 ]



ПОИСК



Верестенко, Н. Д. Кош Исследование коэффициентов взаимной диффузии газов при повышенном давлении

Влияние температуры и давления на коэффициенты переноса в газах

Газы Коэффициент давления

Газы Коэффициент давления

Газы — Коэффициент давлени

Газы — Коэффициент давлени

Давление газа

Зимина Совместный учет влияния давления и коэффициента аккомодации на теплопроводность легких газов в области повышенных давлений

Коэффициент аэродинамический давления газов

Коэффициент давления

Коэффициент давления газов звукопоглощения

Коэффициент давления газов линейного расширения металлов и сплавов

Коэффициент давления газов линейного расширения твердых тел

Коэффициент давления газов объемного расширения Определение

Коэффициент давления газов объемного расширения жидкостей и газов

Коэффициент давления газов расширения (сжатия)

Коэффициент давления газов теплопроводности изоляционных материалов и изделий

Коэффициент давления газов теплопроводности материалов

Коэффициент давления газов теплопроводности огнеупоров

Коэффициент давления газов теплопроводности — Определение

Коэффициент давления газов трения качения

Коэффициент давления газов трения скольжения

Коэффициент объемного расширения газов при постоянном давлении

Коэффициент теплоемкости газа при постоянном давлении

Коэффициенты расчетные защемленные по контуру, обтекаемые сверхзвуковым потоком газа 486 — Давления

Коэффициенты теплопроводности некоторых газов при нормальном давлении

Матура и Тодоса метод расчета коэффициентов диффузии газа, учитывающий влияние давления

Уравнение состояния ли — iJpoapa — сдаистера Вторые вириальные коэффициенты для смесей Правила смешения Правила смешения для смесей жидкостей ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Содержание главы Основные термодинамические принципы Функции отклонения от идеального состояния Вычисление функций отклонения от идеального состояния Производные свойства Теплоемкость реальных газов Истинные критические точки смесей Теплоемкость жидкостей Парофазная фугитивность компонента смеси ДАВЛЕНИЯ ПАРОВ И ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ЧИСТЫХ ЖИДКОСТЕЙ



© 2025 Mash-xxl.info Реклама на сайте