Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние температуры и давления на коэффициенты переноса в газах

Влияние температуры и давления на коэффициенты переноса в газах  [c.99]

В связи с одинаковым характером влияния температуры и дав-л.ения газа на коэффициенты переноса а, у и О и критерии физических свойств Рг ж 3с для газов, близких к идеальным, не зависят от давления и сравнительно слабо изменяются с температурой.  [c.102]

Поведение коэффициентов переноса в зависимости от температуры и давления для инертных газов при высоких температурах будет приближаться к вышеописанному, так как, когда температура увеличивается, притягивающая часть потенциала межмолекулярных взаимодействий становится меньше и оказывает меньшее влияние при определении траекторий частиц в процессе столкновения, и поведение частиц все больше и больше приближается к поведению твердых упругих сфер.  [c.391]


В [Л. 18] предложен приближенный метод расчета коэффициентов трения и теплообмена при плоскопараллельном турбулентном пограничном слое в сжимаемой жидкости с продольными градиентами скорости и температуры. Метод основывается на решении интегральных уравнений движения и тепловой энергии, допущении о возможности представления коэффициентов трения и теплообмена степенными функциями продольной координаты, а также на использовании опытных данных о влиянии на трение и теплообмен различных факторов, усложняющих перенос количества движения и тепла в пограничном слое. К числу таких факторов при обтекании газом тел с непроницаемой поверхностью относятся продольный градиент давления, сжимаемость газа и неизотермические условия движения.  [c.492]

Испарение через мембрану. Это процесс разделения жидких смесей, основанный на различной скорости переноса компонентов смеси через полупроницаемую мембрану вследствие различных значений их коэффициентов диффузии. Из исходного раствора через мембрану в токе инертного газа или путем вакуумирования (рис. 24-8) отводятся пары, которые затем концентрируются в конденсаторе. При разделении происходят растворение вещества в материале мембраны (сорбция), диффузия его через мембрану и десорбция в паровую фазу с другой стороны мембраны. Процесс переноса вещества через мембрану описывается законом Фика [уравнение (24.5)]. Состав паров зависит от температуры процесса (влияние давления на его характеристики незначительно), материала мембраны, состава разделяемой смеси и др. Для увеличения скорости процесса раствор нагревают до 30-60 °С, а в паровой зоне создают разрежение.  [c.333]

На коррозию углеродистой стали влияет также давление воды. Увеличение давления не оказывает влияния на анодный процесс, но ускоряет катодный процесс практически при всех температурах. Максимальная скорость катодного восстановления кислорода наблюдается при 15 МПа. Изменение плотности катодного тока объясняется явлениями переноса в электролите—морской воде. По мнению авторов [6], электропроводность морской воды и коэффициент диффузии газа повышаются с давлением. В продуктах коррозии в начальные периоды коррозионного процесса находят гидроксиды Ре + и Ре + (гексагональная модификация) в соотношении 1 1 при последующем окислении растворенным кислородом образуется только РегОз-иНгО.  [c.19]


Изучение важнейших физико-химических механизмов в условиях турбулентного течения многокомпонентной реагирующей газовой смеси, ответственных за пространственно-временные распределения и вариации определяющих макропараметров (плотности, скорости, температуры, давления, состава и т.п.), особенно эффективно в сочетании с разработкой моделей турбулентности, отражающих наиболее существенные черты происходящих при этом физических явлений. Турбулентное движение в многокомпонентной природной среде отличается от движения несжимаемой однородной жидкости целым рядом особенностей. Это, прежде всего, переменность свойств течения, при которой среднемассовая плотность, различные теплофизические параметры, все коэффициенты переноса и т.п. зависят от температуры, состава и давления среды. Пространственная неоднородность полей температуры, состава и скорости турбулизованно-го континуума приводит к возникновению переноса их свойств турбулентными вихрями (турбулентный тепло- и массоперенос), который для многокомпонентной смеси существенно усложняется. При наличии специфических процессов химического и фотохимического превращения, протекающих в условиях турбулентного перемешивания, происходит дополнительное усложнение модели течения. В геофизических приложениях часто необходимо также учитывать некоторые другие факторы, такие, как влияние планетарного магнитного поля на слабо ионизованную смесь атмосферных газов, влияние излучения на пульсации температуры и турбулентный перенос энергии излучения и т.п. Соответственно, при моделировании, например, состава, динамического и термического состояния разреженных газовых оболочек небесных тел теоретические результаты, полученные в рамках традиционной модели турбулентности однородной сжимаемой жидкости, оказываются неприемлемыми. В связи с этим при математическом описании средних и верхних атмосфер планет возникает проблема разработки адекватной модели турбулентности многокомпонентных химически реагирующих газовых смесей, учитывающей сжимаемость течения, переменность теплофизических свойств среды, тепло- и массообмен и воздействие гравитационного поля и т.п. Эти проблемы рассматриваются в данной части монографии.  [c.9]


Смотреть страницы где упоминается термин Влияние температуры и давления на коэффициенты переноса в газах : [c.156]    [c.67]   
Смотреть главы в:

Теплопередача 1964  -> Влияние температуры и давления на коэффициенты переноса в газах



ПОИСК



Влияние Влияние температуры

Газы Коэффициент давления

Газы — Коэффициент давлени

Д давление температуры

Давление влияние

Давление газа

Коэффициент Влияние температуры

Коэффициент давления

Коэффициент давления газов

Коэффициент переноса

Коэффициенты влияния

Переносье

Температура газа

Температура газов

Ток переноса

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте