Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Балки Изгиб простой поперечный Напряжения

Фиг. 28. Напряженные состояния в точках балки при простом поперечном изгибе а — в точке 1 (см. фиг. 27), б — в точке 2, а — в точке 3. Фиг. 28. <a href="/info/183899">Напряженные состояния</a> в точках балки при <a href="/info/686863">простом поперечном изгибе</a> а — в точке 1 (см. фиг. 27), б — в точке 2, а — в точке 3.

При изучении изгиба прямого бруса (см 31—33) было установлено, что в общем случае нагружения балки в ее поперечных сечениях возникают изгибающие моменты и поперечные силы. Теперь выясним, какие напряжения в сечениях балки будут соответствовать указанным силовым факторам, для чего обратимся сначала к простейшему опыту.  [c.117]

На фиг. 41 приведены напряженные состояния в точках 1, 2 к 3 (фиг. 40) при простом поперечном изгибе балки. Точка 7, наиболее уда-  [c.93]

Получим формулу для определения т в простейшем случае поперечного изгиба балки. Как уже указывалось ( 26), задача об определении напряжений всегда статически неопределима и требует рассмотрения трех сторон задачи. Однако можно принять такие гипотезы  [c.247]

Получим формулу для определения т в простейшем случае поперечного изгиба балки. Как уже указывалось ( 26), задача об определении напряжений всегда статически неопределима и требует рассмотрения трех сторон задачи. Однако можно принять такие гипотезы о распределении напряжений, при которых задача станет статически определимой. Тогда необходимость в привлечении геометрических и физических уравнений отпадет и достаточно рассмотреть одну только статическую сторону задачи. Так именно и будет обстоять дело с выводом формулы для т при изгибе.  [c.266]

Схема деформации. При поперечном изгибе от действия внешних нагрузок в сечениях, перпендикулярных оси балки, возникают касательные напряжения. Возьмем два сечения простой балки  [c.154]

Расчет на прочность при простом изгибе. Брус, работающий на изгиб, часто называют балкой. При поперечном изгибе балок сплошных поперечных сечений касательные напряжения не оказывают влияния  [c.316]

Эти уравнения могут быть использованы для определения касательных напряжений т у = Ху с и нормальных напряжений Gy. Наиболее просто это сделать для балки прямоугольного поперечного сечения. В этом случае при определении принимается предположение об их равномерном распределении по ширине сечения (рис. 7.34). Это предположение было сделано известным русским ученым — мостостроителем Д. И. Журавским. Исследования показывают, что это предположение практически точно соответствует действительному характеру распределения касательных напряжений при изгибе для достаточно узких и высоких балок [b[c.138]

ДЛЯ случая чистого изгиба показано пунктиром на рис. 20.17 (в зоне действия растягивающих напряжений ширина сечения уменьшается, а в зоне действия сжимающих напряжений — увеличивается). Отметим, что задача определения перемещений точек поперечного сечения и искажения формы контура прямоугольного сечения балки при чистом изгибе относится к простейшим задачам теории упругости.  [c.433]


Некоторое приближенное представление о тех изменениях в распределении напряжений, которые возникают вследствие швов расширения, можно получить при сравнении явлений, которые возникают в простой балке прямоугольного сечения при чистом изгибе с явлениями, возникающими в балке при наличии в ней поперечных надрезов. i  [c.407]

На первых этапах изучения мы можем предположить, что изгиб вызван любым способом. Так, мы можем сделать наиболее простое предположение, представив себе, что балка имеет большую длину и изгибается в замкнутое круглое кольцо так, что концевые сечения приводятся в соприкосновение. Если теперь поперечные сечения концевых сечений скрепить вместе, то все внешние силы можно удалить, и мы получим кольцо, поверхность которого совершенно свободна от напряжений. Таким образом, мы имеем пример тела с начальным напряжением (см. 83, гл. III). Соображения симметрии показывают, что плоские сечения, перпендикулярные оси недеформированной балки, после деформации будут также плоскими, и их плоскости будут содержать ось кольца.  [c.208]

Точный анализ деформаций и напряжений упругой балки или стержня представляет довольно сложную задачу. Но исследование, дающее приближенные результаты, сравнительно просто, оно основано на гипотезе, предложенной еще Бернулли и заключающейся в том, что при изгибе стержня или балки все поперечные сечей ия остаются плоскими.  [c.315]

Доказательство теоремы Кирхгофа было основано на допущении, что малым деформациям, которые могут возникать при допускаемых на практике напряжениях, будут соответствовать весьма малые перемещения точек тела и потому можно не делать различия в распределении сил до и после деформации. Когда мы переходим к телам, у которых один или два размера малы, т. е. исследуем вопросы о равновесии тонких пластинок или тонких стержней, то здесь встречаемся с возможностью появления весьма значительных перемещений при деформациях, не выходящих за допускаемые пределы. В таких случаях приходится принимать во внимание те изменения в действии сил, которые обусловлены перемещениями при деформации. В качестве простейшего примера приведем подробно рассмотренную нами задачу об одновременном действии на балку продольной силы и поперечных нагрузок. Если бы мы в этой задаче при оценке действия продольной силы исходили из первоначальной прямой формы, то заключили бы, что продольная сила вызывает лишь растяжение или сжатие стержня. Иной результат мы получим, если примем во внимание перемещения, вызванные деформацией. Мы находим, что продольная сила влияет на изгиб стержня и это влияние при некоторых условиях может быть весьма значительным.  [c.257]

Предыдущее исследование поведения балки при неупругом изгибе носит самый общий характер и может быть использовано для любого вида зависимости напряжения от деформации и любой формы поперечного сечения. Однако иногда зависимость напряжения от деформации можно аппроксимировать аналитическим выражением, и в этом случае напряжения, деформации и кривизну можно определить непосредственным вычислением. Как правило, это возможно лишь для сравнительно простых случаев, что иллюстрируется приведенным ниже примером балки прямоугольного поперечного сечения.  [c.375]

Перейдем к случаю изгиба и рассмотрим балку, имеющую серию отверстий ио поперечному сечению (рис. 230). При чистом изгибе все продольные слои работают на простое растяжение или сжатие, а потому условия концентрации напряжений по краям  [c.229]

Пластический изгиб балки в случае произвольной зависимости между деформациями и напряжениями. Теорию поперечного изгиба стержня малых в сравнении с длиной поперечных размеров из материала, закон деформирования которого отличается от закона Гука, можно сформулировать относительно просто. Предположим, что стержень постоянного поперечного сечения цилиндрической или призматической формы нагружен силами, перпендикулярными его продольной оси и действующими в одной из плоскостей, проходящих через ту или иную из главных осей инерции его поперечного сечения. Будем предполагать также, что размеры этого поперечного сечения в сравнении с его длиной малы и что мы вправе поэтому при исследовании деформаций, обусловленных нормальными напряжениями, пренебрегать деформациями, вызванными касательными напряжениями. Наконец, мы исключаем из нашего рассмотрения профили, составленные, хотя бы и частично, из тонкостенных элементов, а также профили несимметричной формы (как, например, уголки или швеллера), поскольку в подобных случаях изгиб может осложняться кручением.  [c.402]


Поскольку случай изгиба балок связан просто с одноосным напряженным состоянием, мы можем одинаково легко сформулировать все три закона деформации следующим образом, записав связь нормального напряжения а с малой пластической, либо упругой деформациями, либо со скоростью деформирования е в точках некоторого поперечного сечения балки случаи 1 и 2  [c.176]

Так например, при построении элементарной теории поперечного изгиба за соответствующую простую задачу принимается задача о чистом изгибе стержня двумя концевыми изгибающими парами. В этом последнем случае отсутствуют касательные напряжения в поперечных сечениях стержня, так же как и соответствующие этим напряжениям сдвиги. В полном согласии с намеченной выше схемой в решении задачи сопротивления материалов о поперечном изгибе балки касательные напряжения и сдвиги считаются величинами второстепенными (сравнительно с нормальными напряжениями и удлинениями продольных волокон). Отсюда и вытекает  [c.27]

Итак, для рассматриваемого простейшего случая определены все слагаемые основного уравнения (1-3). Нетрудно записать в форме (1.4) и напряжения в любом поперечном сечении элемента. Если, например, ограничиться рассмотрением среднего сечения балки С, то напряжения, возникающие в результате осевого растяжения и изгиба элемента, можно записать в виде  [c.16]

Если же поперечное сечение резко изменяется, то в переходном сечении имеет место значительное Нарушение в распределении напряжений. Наибольшее напряжение обычно гораздо больше, чем напряжение, даваемое простой формулой изгиба балки, и оно может быть представлено формулой  [c.268]

В предыдущих параграфах предполагалось, что материал балок был идеально пластичным (рис. 216). Рассмотрим теперь более общий случай, в котором механические свойства материала представлены кривой АОВ диаграммы на рис. 238. При рассмотрении чистого изгиба таких балок будем предполагать по-прежнему, что поперечные сечения балки остаются плоскими при изгибе следовательно, удлинения и укорочения продольных волокон пропорциональны их расстояниям от нейтрального слоя. Взяв это за основу дальнейших выводов и предположив, что при изгибе существует такое же соотношение между напряжением и деформацией, как и в случае простого растяжения и сжатия, мы сможем легко найти напряжения, возникающие в балке от изгибающего момента любой заданной величины ).  [c.304]

Расчет на прочность при простом изгибе. Брус, работающий на изгиб, часто назывглот балкой. При поперечном изгибе балок сплошных поперечных сечении касательные напряжения не оказывают влияния на прочность. Поэтому, как и при чистом изгибе, прочность таких балок в условиях поперечного изгиба определяется максимальной величиной пормг1Льных напряжений.  [c.209]

Возьмем балку, составленную из двух ничем не скрепленных брусьев, и нагрузим ее изгибающей силой, как показано на рис. 133. Каждый отдельный брус в этом случае будет вести себя, как самостоятельная балка, верхние волокна брусьев будут сжиматься, а нижние — растягиваться. Опыт показывает, что концы такой составной балки принимают прн изгибе ступенчатое расположение, т. е. что отдельные брусья сдвигяются друг относительно друга в продольном направлении. В целой балке ступенчатости концов не получается. Очевидно, в этом случае упругие силы, возникающие в продольных слоях балки, препятствуют этому продольному сдвигу. На рис. 133 показаны стрелками эти касательные усилия. Существованием продольного сдвига, в частности, объясняется появление продольных трещин в балках, материал которых, как, например, дерево, плохо сопротивляется скалыванию вдоль волокон. Убедившись в существовании касательных напряжений при изгибе, перейдем к определению их величины и закона распределения по высоте балки. При этом рассмотрим простейший случай, когда балка имеет прямоугольное сечение. В случае прямоугольного сечения можно предположить, что касательные напряжения в поперечном сечении параллельны поперечной силе Q и что величина их не изменяется по ширине балки, т. е. вдоль нейтральной оси z—z. Такое предположение, как показывают точные исследования, дает весьма небольшую ошибку.  [c.231]

В гл. 3 мы привели простейшую схему численного решения задач о потенциальных течениях, использующую кусочно-постоян-ные распределения р, р и м по граничным элементам. Хотя такой простой подход позволил нам продемонстрировать все принципиальные особенности техники построения решения, более эффективным оказывается алгоритм, в котором указанные выше величины изменяются по крайней мере линейно в пределах каждого граничного элемента. Кроме того, в некоторы адачах теории упругости (таких, как задача об изгибе балки) кусочно-постоянная аппроксимация не обеспечивает правильного распределения касательного напряжения в поперечном сечении балки, и поэтому в гл. 4 было необходимо использовать кусочно-линейные функции t и U.  [c.147]

А. Фёппль интересовался в то время теорией изгиба кривых брусьев и провел большое число испытаний по определению прочности сцепок железнодорожных вагонов. Он полагал, что при вычислении наибольших напряжений в изгибаемом крюке вполне приемлемую точность дает формула простой прямолинейной балки. Профессор К. Бах в Штутгартском политехническом институте был иного мнения и исходил из теории изгиба кривого бруса, построенной Винклером в том предположении, что поперечные сечения кривого бруса остаются при изгибе плоскими. Прандтль получил строгое решение для чистого изгиба кривого бруса узкого прямоугольного поперечного сечения. Оно подтвердило, что поперечные сечения в условиях чистого изгиба остаются действительно  [c.469]


Из теории сопротивления материалов следует, что напряжения от изгиба пропорциональны расстояниям нейтральной оси и распределяются равномерно по ширине поперечного сечения. Этому закону не следуют тавровые и двутавровые сечения, имеющие широкие полки. Напряжения в полках у вертикальной стенки будут больше, чем по краям. Распределение напряжений в полках было обсуждено Р. Бортием ), Т. Карманом ) и В. Метцером ). Для вычисления максимального напряжения при изгибе балки таврового сечения с полкой постоянной толщины и бесконечно большой ширины хорошее простое приближенное решение получается следующим образом пусть 21 — длина пролета, и изгибающий момент изменяется по гармоническому закону М = os (лх/1), тогда приведенная ширина полки в обе стороны от стенки, воспринимающей напряжения, составляет примерно 9% от длины пролета, или, иначе, 18% от расстояния между нулевыми точками эпюры изгибающих моментов.  [c.582]

При таком способе решения задачи может случиться, что на поперечных сторонах полосы х О, х = Г) кроме усилий, необходимых для зфавновеши-вания заданных нагрузок, появятся еще некоторые добавочные усилия. В самом общем случае усилия эти на каждом конце приведутся к силе и паре сил. Влияние их на напряжения в местах, удаленных от концов балки, мы сможем устранить, налагая на найденное для напряжений решение напряя ения, соответствующие простому растяжению или сжатию, напряжения чистого изгиба и напряжения при изгибе силой, приложенной на конце.  [c.89]

Исследование распределения касательных напряжений в фасонных профилях начнем с рассмотрения балки, средняя линия тт поперечного сечения которой имеет произвольную форму (рис. 8Л0 а). Осиупг являются главными центральными осями поперечного сечения, а сила Р параллельна оси у (рис. 8.10, Ь). Если линия действия силы Р проходит через центр сдвига 5, то балка ие будет закручиваться и возникнет простой изгиб в плоскости ху, причем ось Z будет нейтральной осью. Нормальные напряжения в произвольной точке балки задаются формулой  [c.321]

Изучение напряженного состояния при изгибе начнем с простейшего случая, когда на некоторо.м участке балки поперечная сила Q= =0 и, следовательно, изгибающий момент Л1 = onst.  [c.164]

Часто приходится определять прочность балок, ослабленных трещггаами. В таких балках номинальное напряжение изгиба неравномерно распределено по поперечному сечению. Простейший 332  [c.332]

Очевидно, рассуждения, приведшие нас к убеждению, что каждое волокно можно считать находящимся в условиях простого растяжения, теряют силу тогда, когда к балке приложена сосредоточенная сила. Части балки, непосредственно примыкающие к месту приложения сосредоточенных сил, не могут рассчитываться по схеме плоских сечений здесь возникают местные напряжения. Область, в которой отступления от закона плоских сечений существенны, невелика, длина ее имеет порядок поперечного размера. Для изгиба сохраняет силу принцип Сен-Венана, подробно освещенный в 17 для растяжения-сжати . Все сказанное там сохраняет силу и для изгиба.  [c.223]

Мы начнем с простых примеров, в которых поперечное сечение балки имеет одну ось симметрии (ось г) и силы действуют в плоскости, перпендикулярной к этой оси (рис. 208). Рассмотрим случай тонкостенной балки, показанной на рис. 208, а, и определим пол№ жение вертикальной плоскости, в которой должны действовать поперечные силы для того, чтобы произвести простой изгиб балки в вертикальной плоскости. Из наших предыдущих рассуждений о распределении вертикальных касательных напряжений ту (см. стр. 110) мы можем заключить, что практически вся поперечная сила (2 будет воспринята только одними полками. Еслй мы будер рассматривать полки как две отдельные балки, поперечные сече ния которых имеют соответственно моменты инерции У и, то  [c.200]

Отсюда видно что для получения, простого изгиба с нейтральной осью, совпадающей с осью г, вертикальная плоскость, в которой действуют поперечные сил.ы, должна проходить через точку О, называемую центром сдвига. При каком-либо другом пологкении этой плоскости изгиб балки будет сопровождаться кручением, и напряжения уже ие будут следовать простому закону, в котором пропорционально г/ и не зависит от координаты г.,  [c.203]

Если сосредоточенная сила действует в средине прямоугольной балки узкого поперечного сечения высотой h, то большие напряжения-вследствие концентрации, определяемые по формуле (67), накладываются на напряжения от изгиба балки, и в результате получается сложное распределение напряжений вблизи точки приложения груза. Эти неправильности в распределении напряжений, вызываемые сосредоточенным грузом, косят местный характер и имеют важное значение лиш > в области, непосредственно примыкающей к точке приложения груза. Если мы рассмотрим поперечное сечение балки на расстоянии от груза большем, скажем, чем половина высоты балкй, то распределение напряжений в этом поперечном сечении достаточно точно будет определяться по простой формуле для балок.  [c.55]

В предположении, что простая формула для балок может быть использована с достаточной точностью при вычислении нормальных напряжений от изгиба в балках переменного поперечного сечения, ве- личина касательных напряжений в этих балках может быть вычислена при помощи метода, уже примененного для призматических- балок (см. т. I, стр. 105). Предположим, что прямоугольная балка переменной высоты к и постоянной ширины Ь изгибается грузом Р приложенным на конце (рис. 43). Взяв два смежных поперечных сечения тп и т щ и вырезав элемент ттфа горизонтальной плоскостью аЬ, най дем величину касательных напряжений из уравнения равновесия, этого элемента  [c.59]


Смотреть страницы где упоминается термин Балки Изгиб простой поперечный Напряжения : [c.339]    [c.171]    [c.429]    [c.24]    [c.324]    [c.353]    [c.303]    [c.34]    [c.43]    [c.201]   
Сопротивление материалов (1958) -- [ c.93 ]



ПОИСК



Балки Изгиб простой

Балки Напряжения

Изгиб балок

Изгиб балок простой поперечны

Изгиб поперечный

Изгибающие при поперечном изгибе балок

Напряжение изгибающие

Напряжение при изгибе

Напряжения Напряжения изгиба

Напряжения поперечные

Напряжения при поперечном изгибе

Простой поперечный изгиб



© 2025 Mash-xxl.info Реклама на сайте