Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб балок простой поперечны

Изгиб балок простой поперечный  [c.958]

Расчет на прочность при простом изгибе. Брус, работающий на изгиб, часто называют балкой. При поперечном изгибе балок сплошных поперечных сечений касательные напряжения не оказывают влияния  [c.316]

Сложность точного анализа этой задачи вызвала появление различного рода приближенных теорий, которые обычно строятся следующим образом. Делается некоторое кинематическое предположение о характере распределения перемещений, составляется функционал действия по Гамильтону, варьированием этого функционала получается дифференциальное уравнение или система дифференциальных уравнений задачи (идея чрезвычайно близкая к той, которая лежит в основе построения технической теории изгиба балок и пластин). Простейшая теория, которая будет изложена ниже, основывается на уравнении, выведенном еще Рэлеем. Это уравнение содержит предположение элементарной теории о сохранении плоских сечений, но принимает во внимание инерцию поперечного движения элементов стержня. Направим ось Xi по центральной оси стержня произвольного поперечного сечения, тогда оси и Хз будут лежать в плоскости поперечного сечения. Полагая деформацию = независящей от Хг х , найдем вгг = зз = —vmi, i, следовательно, перемещения равны  [c.449]


Правило знаков. Простейший расчет конструкции автомобиля строится на схематизации конструкции, состоящей из балочных элементов. Таким образом, для изучения работы кузова автомобиля основополагающим является рассмотрение изгиба балок. Расчет балок, работающих на изгиб, облегчает установление и соблюдение строгих правил знаков. Четыре правила, которые при этом необходимо соблюдать, можно рассмотреть на элементе балки прямоугольного поперечного сечения, показанном на рис. 3.5.  [c.77]

Это уравнение приходится брать вместо уравнения (2), когда желательно найти более точное выражение для изогнутой оси стержня. Интегрируя уравнение (2) или (5) и принимая при этом во внимание условия закрепления концов, мы без особых затруднений можем в каждом частном случае найти прогибы стержня и углы поворота отдельных поперечных сечений. Ряд простейших примеров этого рода разобран в курсе сопротивления материалов, и мы в дальнейшем ограничимся рассмотрением нескольких более сложных задач, относящихся к исследованию изгиба балок, лежащих на упругом основании, и балок, подвергающихся одновременному действию изгиба и сжатия или изгиба и растяжения.  [c.191]

Поскольку случай изгиба балок связан просто с одноосным напряженным состоянием, мы можем одинаково легко сформулировать все три закона деформации следующим образом, записав связь нормального напряжения а с малой пластической, либо упругой деформациями, либо со скоростью деформирования е в точках некоторого поперечного сечения балки случаи 1 и 2  [c.176]

Поперечные сечения работающих на изгиб брусьев (балок) зачастую имеют более сложную форму, чем рассмотренные в предыдущих параграфах простейшие фигуры во многих случаях поперечное сечение представляет собой сочетание профилей стандартного проката — двутавров, швеллеров, уголков, полос.  [c.256]

Поперечные сечения работающих на изгиб брусьев (балок) зачастую имеют более сложную форму, чем рассмотренные в предыдущих параграфах простейшие фигуры во многих случаях поперечное  [c.252]

Дальше для простоты будем рассматривать изгиб простейших типов балок, имеющих плоскость симметрии, проходящую через продольную ось, силами, действующими в плоскости симметрии. Наиболее распространенные балки круглого, прямоугольного, двутаврового и других поперечных сечений обладают такой симметрией.  [c.377]

Задача определения модулей межслойного сдвига окончательно не решена до настоящего времени. Сложность ее решения обусловлена тем, что межслойные модули сдвига, как правило, определяются на стержнях, где трудно реализовать условия чистого сдвига. Обычно для этой цели используется изгиб коротких балок или кручение стержней с различным отношением параметров их поперечного сечения. Первый способ прост в реализации, но не позволяет получать достоверных сведений вследствие сложного напряженного состояния в образце при малом отношении //Л (см. с. 41). Приближенные зависимости, которые исполь-  [c.45]


Расчетную модель машиностроительной конструкции можно представить совокупностью взаимосвязанных простейших элементов, таких, как масса, жесткость, стержень, пластина или оболочка. Колебания этих элементов описываются достаточно простыми математическими зависимостями. Линейные размеры подсистемы, представляемой простейшим элементом, зависят от расчетной частоты, и с ее увеличением для удовлетворительной точности решения систему приходится разделять на все большее число элементов. Так, например, тонкостенная сварная балка в области низких частот может рассматриваться как сосредоточенная масса, в области средних частот — как стержень, а на высоких частотах — как набор пластин. Частотный диапазон применения стержневой модели значительно расширяется, если учесть сдвиг и инерцию поворота сечений при изгибе и кручении. Эти поправки особенно существенны для балок с малым отношением длины к высоте, набором которых можно представить балку переменного поперечного сечения.  [c.59]

Эти уравнения могут быть использованы для определения касательных напряжений т у = Ху с и нормальных напряжений Gy. Наиболее просто это сделать для балки прямоугольного поперечного сечения. В этом случае при определении принимается предположение об их равномерном распределении по ширине сечения (рис. 7.34). Это предположение было сделано известным русским ученым — мостостроителем Д. И. Журавским. Исследования показывают, что это предположение практически точно соответствует действительному характеру распределения касательных напряжений при изгибе для достаточно узких и высоких балок [b[c.138]

Расчет балок по предельным нагрузкам при поперечном изгибе несложен, потому что условие возникновения течения в балке (условие образования пластического шарнира) определяется значением одного единственного внутреннего силового фактора — изгибающего момента. Так же просто подсчитать предельные нагрузки и в стержневых системах, отдельные стержни которых работают только на растяжение или сжатие. Для пластин и особенно для оболочек вся техника вычисления предельных нагрузок существенно усложняется, поскольку условие течения в них определяется комбинацией значений нескольких внутренних силовых факторов. Но сам подход к определению предельных нагрузок и сущность статического и кинематического методов остаются теми же.  [c.177]

Излагая теорию изгиба консоли и простой балки, Юнг приводит важнейшие результаты, относящиеся к прогибам и прочности, не давая их вывода. Исследование поперечного выпучивания сжатых колонн сопровождается у него следующим любопытным замечанием Во всех проведенных до сего времени опытах с изгибом колонн и балок под воздействием продольных сил можно заметить большие неправильности, и нет сомнения, что в некоторых случаях они обусловлены трудностью приложения в опытах силы по торцам точно по оси, в других же—местными неоднородностями материала, волокна которого очень часто располагаются так, что образуют колонну не прямую, а искривленную уже в самом начале .  [c.115]

Перейдем теперь к исследованию изгиба неразрезных сжатых балок. Предположим опоры абсолютно жесткими и расположенными на одном уровне. За лишние неизвестные примем опорные моменты. Величины этих моментов будем разыскивать таким же способом, как и при отсутствии продольной силы. Поперечными сечениями, проведенными над опорами, разрезаем нашу многопролетную балку на ряд простых балок.  [c.213]

При расчете балок и рам, работающих в основном на изгиб, влиянием продольных и поперечных сил на перемещения обычно пренебрегают, за исключением особо оговоренных случаев. Поэтому при определении обобщенных перемещений методом Максвелла — Мора для балок и рам используется простая формула  [c.282]

Ранее подчеркивалось, что на практике в основном используют подходы, основанные на принципе минимума потенциальной энергии (предполагаемые перемещения). Имеется все же возможность использовать эти подходы при формулировке уравнений жесткости с учетом поперечных сдвиговых деформаций для балок, пластин и оболочек путем простой аппроксимации, в которой суммируются результаты, полученные по отдельности при анализе чистого изгиба и чистого сдвига. Чтобы описать этот подход, изучим элемент 1—2, изображенный на рис. 12.16, являющийся частью всей балочной конструкции. Из рисунка видно, что поперечная сдвиговая деформация равна 7,х2=(ьУг—где верхним индексом 5 отмечено, что соответствующие перемещения обусловлены лишь деформациями сдвига. Кроме того, так как Ухг=2( + 1)Рх А Е, то  [c.379]


В предыдущих параграфах предполагалось, что материал балок был идеально пластичным (рис. 216). Рассмотрим теперь более общий случай, в котором механические свойства материала представлены кривой АОВ диаграммы на рис. 238. При рассмотрении чистого изгиба таких балок будем предполагать по-прежнему, что поперечные сечения балки остаются плоскими при изгибе следовательно, удлинения и укорочения продольных волокон пропорциональны их расстояниям от нейтрального слоя. Взяв это за основу дальнейших выводов и предположив, что при изгибе существует такое же соотношение между напряжением и деформацией, как и в случае простого растяжения и сжатия, мы сможем легко найти напряжения, возникающие в балке от изгибающего момента любой заданной величины ).  [c.304]

Расчет на прочность при простом изгибе. Брус, работающий на изгиб, часто назывглот балкой. При поперечном изгибе балок сплошных поперечных сечении касательные напряжения не оказывают влияния на прочность. Поэтому, как и при чистом изгибе, прочность таких балок в условиях поперечного изгиба определяется максимальной величиной пормг1Льных напряжений.  [c.209]

Пластиной называется тело, ограниченное двумя плоскостями Z = h и цилиндрической поверхностью, образующие которой параллельны оси z. В плоскости z = О, называемой срединной плоскостью, выбираются произвольным образом координаты Ха (а = 1,2). Предполагается, что размеры пластины в плане значительно больше, чем толщина 2h (рис. 12.4.1). Так же, как в 2.1, где речь шла о стержнях, будем принимать за 1[аимень-ший поперечный размер наименьшее расстояние между касательными к контуру пластины. Под контуром пластины понимается контур сечения цилиндрической поверхностью плоскости Z = 0. Так же, как теория изгиба балок, теория пластин может быть построена при помощи любого из вариационных принципов. Если при выводе уравнения изгиба мы отправлялись от вариационного принципа Лагранжа, то здесь мы примем за основу вариационный принцип Рейснера (не в силу каких-то его преимуществ, а для иллюстрации метода). Дело в том, что в физически нелинейной теории пластин, изготов- Рис. 12.4.1 ленных из нелинейно-упругого или пластического материала, реализация вычислений на основе принципа Лагранжа приводит к очень большим трудностям, тогда как принцип Рейснера позволяет получить приближенное решение задачи относительно просто.  [c.395]

Улучшения, вводимые рассмотрением в- рам ах теории упругости в -3.3, 3.4, 5.2—5.5, приводят, разумеется, к точным, или почти точным, значениям для деформаций и перемещений, а также и для напряжений. Однако эти методы, как правило, трудно или невозможно при енять к конструкциям типа ферм или конструкциям, изготовленным из слоистых материалов, но, во всяком случае, если главное внимание уделяется ошибкам при определении прогибов, то можно воспользоваться поправками к классической теории,-которые получаются гораздо более простым способом. Такие поправки основываются на прибавлении прогибов, обу словленных поперечными деформациями (главным образом деформациями поперечного сдвига), к прогибам, возникающим всййдствие изгиба и рассматртаемым в классических теориях. Такой тиц поправок впервые был использован С. П. Тимошенко для балок, а для пластин, по-видимому, автором ).  [c.378]

Часто приходится определять прочность балок, ослабленных трещггаами. В таких балках номинальное напряжение изгиба неравномерно распределено по поперечному сечению. Простейший 332  [c.332]

Если сосредоточенная сила действует в средине прямоугольной балки узкого поперечного сечения высотой h, то большие напряжения-вследствие концентрации, определяемые по формуле (67), накладываются на напряжения от изгиба балки, и в результате получается сложное распределение напряжений вблизи точки приложения груза. Эти неправильности в распределении напряжений, вызываемые сосредоточенным грузом, косят местный характер и имеют важное значение лиш > в области, непосредственно примыкающей к точке приложения груза. Если мы рассмотрим поперечное сечение балки на расстоянии от груза большем, скажем, чем половина высоты балкй, то распределение напряжений в этом поперечном сечении достаточно точно будет определяться по простой формуле для балок.  [c.55]

В предположении, что простая формула для балок может быть использована с достаточной точностью при вычислении нормальных напряжений от изгиба в балках переменного поперечного сечения, ве- личина касательных напряжений в этих балках может быть вычислена при помощи метода, уже примененного для призматических- балок (см. т. I, стр. 105). Предположим, что прямоугольная балка переменной высоты к и постоянной ширины Ь изгибается грузом Р приложенным на конце (рис. 43). Взяв два смежных поперечных сечения тп и т щ и вырезав элемент ттфа горизонтальной плоскостью аЬ, най дем величину касательных напряжений из уравнения равновесия, этого элемента  [c.59]


Смотреть страницы где упоминается термин Изгиб балок простой поперечны : [c.171]    [c.5]    [c.97]    [c.70]   
Сопротивление материалов (1958) -- [ c.93 ]



ПОИСК



Балки Изгиб простой

Балки Изгиб простой поперечный Напряжения

Изгиб балок

Изгиб поперечный

Изгибающие при поперечном изгибе балок

Построение эпюр поперечных сил и изгибающих моментов для простой балки

Простой поперечный изгиб

Эшоры поперечных сил и изгибающих моментов для простейших случаев нагружения балки



© 2025 Mash-xxl.info Реклама на сайте