Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Топливо Внутренняя энергия продуктов сгорания

В паротурбинных установках процесс получения работы происходит следующим образом (рис. 19-1). Химическая энергия топлива при его сжигании превращается во внутреннюю энергию продуктов сгорания, которая затем в виде теплоты передается воде и пару в котле / и перегревателе 2. Полученный пар направляется в паровую турбину 3, где и происходит преобразование теплоты в механическую работу, а затем обычно в электрическую энергию в электрогенераторе Отработавший пар поступает в конденсатор 5, где отдает теплоту охлаждающей воде. Полученный конденсат конденсационным насосом б направляется в питательный бак 7, откуда питательная вода забирается питательным иасосом S, сжимается до давления, равного давлению в котле, и подается через подогреватель 9 в паровой котел I.  [c.296]


Энергию, поступающую вместе с газообразными молекулами продуктов сгорания топлива, Н. М. Глаголев определяет по теплотворной способности топлива, что равносильно определению указанной энергии по внутренней энергии продуктов сгорания, исчисленной от температуры калориметра.  [c.10]

Рис. 10.21. Зависимость удельной внутренней энергии продуктов сгорания топлива нефтяного происхождения от Рис. 10.21. Зависимость удельной внутренней энергии продуктов сгорания топлива нефтяного происхождения от
Работа движущих сил в машинах-двигателях совершается в результате преобразования механической или других видов энергии в механическую работу. Так, в паровых машинах — за счет преобразования в механическую работу тепловой энергии пара, поэтому свежий пар, поступающий в машину, имеет большую энергию, или, как говорят, обладает большим теплосодержанием, чем отработанный пар. В двигателях внутреннего сгорания — в результате преобразования химической энергии топлива в тепловую энергию продуктов сгорания и тепловой энергии последних в механическую работу.  [c.16]

В двигателях внутреннего сгорания (д.в.с.) два основных рабочих процесса, входящих в их теоретический термодинамический цикл, а именно сгорание топлива (подвод теплоты) и преобразование тепловой энергии продуктов сгорания в механическую работу (расширение газов) осуществляются в одном месте — внутри рабочего цилиндра. Именно поэтому машины такого типа называют двигателями внутреннего сгорания — в отличие от паросиловых установок (паровозов, тепловых электростанций), в которых сгорание топлива осуществляется вне двигателей.  [c.63]

Поскольку величина б/ пропорциональна увеличению объема, то в качестве рабочих тел, предназначенных для преобразования тепловой энергии в механическую, целесообразно выбирать такие, которые обладают способностью значительно увеличивать свой объем. Этим качеством обладают газы и пары жидкостей. Поэтому, например, на тепловых электрических станциях рабочим телом служат пары воды, а в двигателях внутреннего сгорания — газообразные продукты сгорания того или иного топлива.  [c.13]


Но если реагирующие вещества образуют изолированную систему, а фактически часто так и бывает в двигателях внутреннего сгорания, то их внутренняя энергия остается неизменной, и тепло не выделяется и не поглощается. Просто в результате реакции часть энергии связи молекул топлива переходит в энергию хаотического движения молекул продуктов горения, что приводит к повыщению их температуры и давления. Это и позволяет машине совершать работу.  [c.108]

Рабочим телом в ГТУ являются продукты сгорания жидкого или газообразного топлива, которые под большим давлением поступают в сопловой аппарат турбины. В сопловых каналах 7 скорость рабочего тела увеличивается, а давление падает, происходит переход внутренней энергии давления газов в кинетическую энергию потока. Этот поток газов, входя с большой скоростью в криволинейные каналы 8, образованные рабочими лопатками турбины, оказывает на них давление и заставляет вращаться рабочее колесо. Кинетическая энергия рабочего тела нре-  [c.184]

Широкое внедрение электромобилей взамен используемых сейчас автомобилей, работающих на химически связанной энергии (например, на бензине), могло бы дать двойную выгоду. Сократилось бы общее потребление нефти и было бы ограничено распространение такого источника загрязнения воздуха, каким является двигатель внутреннего сгорания. Однако даже если бы современные модели автомобилей с двигателями внутреннего сгорания были заменены электромобилями, проблема охраны воздушного бассейна от загрязнения осталась бы. Дело в том, что для зарядки автомобильных аккумуляторов (батарей, топливных элементов) понадобится увеличить выработку электроэнергии на электростанциях Однако электростанции являются крупными и стационарными источниками энергии и на них существенно легче осуществлять меры по охране воздушного бассейна от загрязнения продуктами сгорания топлива (см. гл. 13).  [c.243]

Электрохимические генераторы энергии в последнее время привлекают все большее внимание. И это вполне оправдано. Действительно, возможность получать электроэнергию, не сжигая топлива, а превращая химическую энергию его и окислителя сразу в электроэнергию, чрезвычайно заманчива. Длинная цепочка энергетических превращений [химическая энергия топлива и окислителя — внутренняя энергия горячих продуктов сгорания— теплота — внутренняя энергия рабочего тела (вода, пар)—механическая энергия турбины — электроэнергия], проводимых в сложных устройствах со значительными потерями эксергии (более 50%), заменяется одним процессом в одном устройстве — электрохимическом генераторе электроэнергии (ЭХГ). КПД этих устройств очень высок. Пока ЭХГ дороги и их использование ограничено, но интенсивная работа по их совершенствованию идет весьма успешно.  [c.215]

Двигатели внутреннего сгорания относятся к тепловым двигателям, в которых сгорание топлива протекает внутри рабочего цилиндра. В результате сгорания топлива в цилиндре образуются газы высокого давления, действующие на поршень двигателя. Таким образом, в цилиндре двигателя энергия газа высокого давления преобразуется в работу движущегося поршня и далее, с помощью шатунно-кривошипного механизма, передаётся на вал двигателя. Двигатели внутреннего сгорания работают либо на жидком топливе (соляровое масло,продукты перегонки нефти), либо на природном или искусственном горючем газе.  [c.349]

Так, при сгорании топлива в топке котельного агрегата выделяется химическая энергия топлива, превращающаяся в эквивалентное количество внутренней энергии образующихся газообразных продуктов сгорания. Внутренняя энергия газов в значительной своей части переходит в полезную энергию образующегося в котле водяного пара. Другая — меньшая — часть энергии газов не используется, а представляет собой тепло, уносимое газами в дымовую трубу (потери с уходящими газами), тепло, передаваемое воздуху котельного помещения (потери от охлаждения), и тепло, теряемое от химического и механического недожога топлива. Этим не заканчиваются дальнейшие превращения энергии энергия водяного пара, папример, используется для получения механической энергии в паровых двигателях, в дальнейшем превращаемой в электрогенераторе в электрическую энергию, и т. д.  [c.55]


Важной характеристикой ГТУ является внутренний КПД реального цикла, учитывающий все потери преобразования энергии, в том числе потери трения в процессах сжатия и расширения. Внутренний КПД можно выразить через рассмотренные выше величины, характеризующие работу установки. Примем, что через компрессор проходит 1 кг воздуха, а через ГТ соответственно (1 + q ) кг продуктов сгорания, где — количество топлива, подаваемое в камере сгорания (КС) на каждый 1 кг воздуха  [c.31]

Теплотворной способностью при постоянном объеме ( V) некоторого топлива при заданной опорной температуре называется уменьшение внутренней энергии единичного количества топлива (т. е. 1 кг или кмоль) в результате его полного сгорания в сосуде с постоянным объемом, после чего температура продуктов понижается до начальной температуры реагентов.  [c.292]

На базовых автомобилях устанавливают поршневые двигатели внутреннего сгорания — двигатели, у которых топливо, распыленное и смешанное с воздухом, сгорает внутри цилиндров, а выделяющиеся при этом газы (продукты сгорания) производят работу, перемещая поршни, расположенные в цилиндрах. Таким образом двигатель внутреннего сгорания преобразует работу расширения газообразных продуктов сгорания топлива в механическую энергию. Полученная механическая энергия может непосредственно передаваться рабочим органам крана трансмиссией привода, которая в этом случае представляет собой единую механическую силовую передачу, состоящую из отдельных механических передач, коробок, редукторов и механизмов, а также соединительных муфт.  [c.14]

Двигатель внутреннего сгорания — это агрегат, который преобразует тепловую энергию, выделяющуюся в процессе сгорания топлива, в механическую работу. Расширяющиеся при этом газы (продукты сгорания) перемещают подвижные детали двигателя — поршни, лопатки, колеса турбины и совершают работу.  [c.70]

Двигатель внутреннего сгорания - составная часть машины, которая преобразует работу расширения газообразных продуктов сгорания топлива в механическую энергию, передаваемую через трансмиссию и рабочие механизмы рабочим органам машины.  [c.409]

Поршневые двигатели внутреннего сгорания относятся к тому классу тепловых двигателей, у которых химическая энергия топлива преобразуется в тепловую непосредственно внутри рабочего цилиндра. В результате химической реакции топлива с кислородом воздуха, поступающего в цилиндр, образуются газообразные продукты сгорания с высокими давлением и температурой. Преобразование полученной тепловой энергии в механическую осуществляется посредством передачи работы расширения продуктов сгорания на поршень, поступательно-возвратное движение которого преобразуется с помощью кривошипно-шатунного механизма во вращательное на коленчатом валу двигателя.  [c.5]

Поршневым двигателем внутреннего сгорания называют такой тепловой двигатель, у которого химическая энергия топлива преобразуется в тепловую непосредственно внутри рабочего цилиндра,] Преобразование полученной тепловой энергии в механическую осуществляется следующим образом. В результате окисления топлива кислородом воздуха образуются газообразные продукты сгорания с высоким давлением и температурой 1600—2000 С. Газообразные продукты сгорания, расширяясь, давят на поршень, перемещающийся внутри цилиндра ограниче)шых размеров при этом совершается полезная работа.  [c.6]

Газовая турбина представляет собой двигатель внутреннего сгорания, так как в ней топливо сгорает внутри двигателя в специальной камере и рабочим телом являются продукты сгорания, как и в поршневом двигателе внутреннего сгорания. Устройство газовой турбины имеет много общего с паровой турбиной. Так" же, как и у паровой турбины, к основным частям газовой турбины относятся вал, рабочее колесо с лопатками и корпус со. вставленными соплами. Отличие газовой турбины от паровой состоит в том, что в механическую энергию преобразуется кинетическая энергия не пара, а продуктов сгорания.  [c.16]

Изменение удельного объема V в уравнении (1) лучше также выразить через время / или угол поворота коленчатого вала р. Последнее легко выполнить, используя закономерности кинематики кривошипно-шатунного механизма. В процессе сгорания химическая энергия топлива непрерывно превращается в тепловую, которая частично используется на осуществление работы и повышение внутренней энергии рабочего тела и частично теряется в результате теплоотдачи в стенки полости цилиндра и на диссоциацию части молекул продуктов сгорания. В соответствии с этим относительная скорость теплоиспользования получается согласно уравнению  [c.10]

Тепловое излучение газов имеет большое значение в процессах теплообмена, происходящих в кузнечных и термических печах. Вследствие горения топлива в рабочем пространстве печей выделяются раскаленные газы (продукты сгорания), которые передают свою тепловую энергию лучеиспусканием на внутренние стенки печей ц нагреваемый металл.  [c.11]

Превращение энергии при сгорании топлива в цилиндре двигателя сопровождается выделением тепла, которое идет на совершение механической работы, на повышение внутренней энергии газов, а также частично расходуется на нагревание деталей и через них переходит к охлаждающей жидкости или воздуху. Кроме того, часть внутренней энергии топлива оказывается не выделенной вследствие его неполного сгорания и в результате диссоциации продуктов сгорания.  [c.109]


Газовый МГД генератор имеет существенные преимущества по сравпеыию с обычной паротурбинной установкой. В паротурбинной установке химическая энергия топлива сначала переходит во внутреннюю энергию продуктов сгорания, которая в котельной установке частично передается воде и водяному пару, а энергия пара в турбогенераторе создает электрическую энергию. В МГД генераторе рабочим телом служит ионизированный проводящий газ, движущийся в магнитном поле и являющийся одновременно проводником, что обусловливает более простую конструкцию установки. Кроме того, применение более высоких температур, получающихся в процессе горения, и отсутствие динамических и механических напряжений в МГД генераторе увеличивают эс1)фективпый к. п. д.  [c.325]

Цикл газотурбинной установки. На рис. 1.61 дана принципиальная схема газотурбинной установки (ГТУ). В камеру сгорания 2 поступает сжатый воздух из компрессора I и жидкое топливо из топливного насоса 4. Полученные в камере сгорания продукты сгорания поступают в сопловой аппарат а газовой турбины 3, в котором осуществляется процесс превращения потенциальной (внутренней) энергии продуктов сгорания в кинетическую энергию потока, поступающего на лопатки в диска б турбины. Каждая соседняя пара лопаток образует криволинейный канал, в результате движения по которому энергия газового потока расходуется на вращение диска турбины. Сжигание топлива в камере сгорания может происходить как изобарно, так и изохорно однако в промышленности получили распространение главным образом газовые турбины с изобарным подводом теплоты.  [c.90]

Циклы паросиловых установок. Цикл Ренкина. Принципиальная схема современной паросиловой установки изображена на рис. 1.65. В топке парогенератора 1 сжигается топливо. Внутренняя энергия полученных продуктов сгорания передается через стенки теплопередающей поверхности парогенератора циркулирующей в нем воде, в результате чего она нагревается и превращается в насыщенный пар давления pi. Далее этот пар поступает в пароперегреватель 2, где он за счет внутренней энергии продуктов сгорания перегревается при постоянном давлении до заданной температуры перегрева fi. После этого пар поступает в паровую турбину 3, в которой в результате адиабатного расширения от давления pi до рг производится работа последняя трансформируется в сидящем на одном Biuiy с турбиной электрогенераторе 4 в электрическую энергию. Отработавший пар с параметрами Р2 И (2 поступает в конденсатор 5, где охлаждающая вода конденсирует его в жидкость той же температуры ti. Далее, с помощью насоса 6 конденсат из конденсатора поступает снова в парогенератор, завершая цикл.  [c.92]

Средняя мольная изобарная теплоемкость, энтальпия и внутренняя энергия продуктов полного сгорания нефтяного топлива для рааличных  [c.307]

Основными недостатками поршневых двигателей внутреннего сгорания ЯВЛЯЮТСЯ ограниченность их мощности и невозможность адиабатного расширения рабочего тела до атмосферного даЕления. Эти недостатки отсутствуют в газотурбинных установках, где рабочим телом являются продукты сгорания жидкого или газооб )азного топлива. Рабочее тело, имеющее высокие температуру и данлеиие, из камеры сгорания направляется в комбинированное сопло, в котором оно расширяется и с большой скоростью поступает на лопатки газовой турбины, где используется его кинетическая энергия для получения механической работы.  [c.278]

В регенераторе ГТУ теплота продуктов сгорания топлива передается воздуху, температура которого повышается от ti = 20 °С до 2= 350 °С при р= onst = 990 гПа. Определить объем нагретого воздуха и изменение его внутренней энергии за 1 ч, а также массовый расход (кг/ч) продуктов сгорания, если объемный расход воздуха, отнесенный к н. у., составляет Vt = 8000 м /ч, изменение температуры продуктов сгорания в теплообменнике А г — = 350, а средняя теплоемкость продуктов сгорания Ср = = 1,12 кДж/(кг К).  [c.24]

Котлоагрегаты делятся на паро- и теплогенераторы. Парогенератором называется агрегат, состоящий из топки, поверхностей нагрева, находящихся под давлением рабочей среды (жидкого теплоносителя, парожидкостной смеси, пара), и воздухоподогревателя, предназначенный для поАучения пара заданных параметров. На рис. 5.1 изображена принципиальная схема парогенератора с естественной циркуляцией в нем жидкого теплоносителя, например воды. В топке I сжигается топливо, образующиеся продукты сгорания в виде факела передают часть своей внутренней энергии (в основном излучением) кипящей воде, движущейся в кипятильных трубах 2, расположенных на стенках топки. Эти испарительные поверхности нагрева называются экранами. Далее продукты сгорания проходят через верхнюю часть заднего экрана 3, называемого фестоном (разреженные трубы экрана), и последовательно омывая пароперегреватель 4, экономайзер 5, воздухоподогреватель 6, охлаждаются до 180... 120°С и с помощью дымососа через дымовую трубу выбрасываются в атмосферу.  [c.276]

Двигателями внутреннего сгорания (д. в. с.) называются тепловые машины, в которых химическая энергия топлива, сгорающего в рабочей полости двигателя, превращается в полезную механическую работу. Поршневые д. в. с. состоят из кривошинпо-шатун-ного механизма, механизма газораспределения, систем питания, смазки и охлаждения. Топливо, сгораемое внутри цилиндра, образует продукты сгорания, имеющие высокую температуру и большое давление. Под воздействием этого давления поршень совершает возвратно-поступательное движение, которое с помощью кривошипно-шатунного механизма преобразуется во вращательное движение коленчатого вала.  [c.151]

Рассмотренная схема ВХМ не единственная, полученные значения технико-экономических показателей являются ориентировочными. По энерге-тическпм показателям более экономичной является ВХМ с дополнительной камерой его-рания топлива и впрыском воды в проточную часть компрессора (рис. 6-26,6). Впрыск воды приближает процесс сжатия к изотермическому и уменьшает работу сжатия, а подача топлива в камеру сгорания позволяет осуществлять прямое преобразование тепловой энергии в механическую, что повышает коэффициент полезного действия установки и исключает необходимость в электроприводе, мультипликаторе и газо-газовом теплообменнике. Вместо камеры сгорания может быть использован двигатель внутреннего сгорания или иной источник теплоты. Это делает возможной утилизацию теплоты выхлопных газов и соответственно повышает эффективность холодильной установки. Кроме того, для горения можно использовать выходящий из контактного аппарата влажный воздух, тогда исключается увлажнение и загрязнение воздуха продуктами сгорания топлива перед контактным аппаратом.  [c.169]


Поясним это на простом примере — тепловой электростанции. В ней протекает целая цепочка энергетических превращений. Сначала химическая энергия топлива и окислителя (кислорода воздуха) превращается во внутреннюю энергию раскаленных продуктов сгорания затем эта энергия в форме теплоты передается воде и превращается во внутреннюю энергию пара. В свою очередь энергия пара в турбине превращается в механическую, а та — уже в электрическую. Часть внутренней энергии пара отводится из конденсатора охлаждающей водой и выбрасывается в окружающую среду. В целом вся эта последовательность укладывается в вариант 4 схемы энергетических превращений на рис. 3.7. Часть энергии (от 35 до 40 %) преобразуется в полностью упорядоченную, безэнтропийную электроэнергию, зато другая, большая ее часть, низкокачественная, с повышенной энтропией, сбрасывается в окружающую среду. Совершенно очевидно, что чем больше возрастание энтропии на каждом этапе энергетических превращений (т. е. чем хуже они организованы), тем больше будет и суммарный рост энтропии. А это неизбежно приведет к уменьшению безэнтропийной доли энергии на выходе (т. е. электроэнергии) и увеличению доли сбрасываемой высокоэнтропийной теплоты. В электроэнергию перейдет не 35—40 % исходной химической энергии, а меньше — 30, 25 % и т. д. То же самое будет и в любой другой технической системе, что бы она ни производила — теплоту, холод, каучук или металл...  [c.155]

Калориметрическая бомба измеряет изменение внутренней энергии с другой стороны, проточный калориметр измеряет изменение энтальпии. Если бы конечные состояния двух процессов были идентичны, то указанное различие в измеренных величинах на единицу массы топлива было бы незначительным. Конечные состояния отличаются в основном тем, что концентрация воды в продуктах сгорания является значительно большей для калориметрической бомбы, чем для проточного калориметра, благодаря присутствию азота в последнем. Если топливо содержит много водорода, в калориметрической бомбе образуется жидкая вода, которая отсутствует в проточном калориметре. По этой причине, если определять величину теплотворной способности в калориметрической бомбе, она оказывается большей, чем при определении в потоке, и называется выс1ней теплотворной способностью. Разность между двумя значениями теплотворной способности часто бывает довольно значительной.  [c.144]

Аналогичная идеальная ( термотопическая ) установка должна была бы быть не только полностью обратимой как внутренне, так и при теплообмене с внешней средой, но и отдавать продукты сгорания при температуре Го, сводя тем самым к минимуму потерю энергии через жаровую трубу (часто в этом случае ошибочно говорят о потерянном тепле ). Как известно из разд. 13.13, при этих условиях суммарная полезная работа должна быть равна [( j )rev]j. р> так ЧТО ИЗ равенствз (13.28) для единицы массы сгоревшего топлива можно написать  [c.237]

Силовое оборудование является источником энергии и представляет собой систему устройств, преобразующих тот или иной вид энергии в механическую. В качестве силового оборудования привода подъемно-транспортных и строительных машин используют двигатели внутреннего сгорания базовых автомобилей, преобразующие работу расширения газообразных продуктов сгорания топлива в механическую энергию. Подробные знания о двигателях внутреннего сгорания получают при изучении предмета Устройство и техническое обслуживание автомобилей .  [c.47]

Двигатель внутреннего сгорания преобразует работу расширения газообразных продуктов сгорания топлива в механическую ягергию. Полученная механическая энергия может непосредствен-яо передаваться трансмиссией исполнительным механизмам крана. Приводы с описанной схемой преобразования и передачи энергии называются механическими.  [c.12]

Общее устройство. Двигатель — это силовой агрегат, преобразующий какой-либо вид энергии в механическую работу. В двигателях внутреннего сгорания, применяемых в автомобилях, мотоциклах и мотороллерах, в механическую работу преобразуется тепловая энергия, выделяющаяся в процессе сгорания топлива. При этом расширяющиеся газы (продукты сгорания топлива) перемещают подвижные детали двигателя поршни, лопатки колеса турбины и т. п. и совершают механическую работу.  [c.21]

Двигатели внутреннего сгорания, как известно, получили широкое распространение в стациоиарных, судовых и транспортных установках. Однако развитие в СССР широкой электрификации различных отраслей народного хозяйства и сооружение в связи с этим крупных тепловых электрических станций уменьшило роль стационарных установок с двигателями внутреннего сгорания и ограничило их применение. Точно так же в области современной скоростной авиации двигатели внутреннего сгорания уступили ведущее место турбореактивным и реактивным двигателям. Это видно из следующих примеров. Для повышения к. п. д. и увеличения силы тяги самолета в некоторых поршневых двигателях начала использоваться энергия отработавших газов в специально приспособленном реактивном сопле. В дальнейшем развитии этих типов двигателей стали применять недожог топлива в цилиндре с последующим. его догоранием в реактивной камере и использованием продуктов сгорания также в реактивном сопле. Позже это послужило предпосылкой для того, чтобы в быстроходных самолетах отказаться от поршневых машин и применить в них принципиально новые реактивные двигатели.  [c.288]


Смотреть страницы где упоминается термин Топливо Внутренняя энергия продуктов сгорания : [c.412]    [c.129]    [c.212]    [c.68]    [c.126]    [c.11]    [c.222]    [c.180]    [c.85]   
Автомобильные двигатели Издание 2 (1977) -- [ c.54 ]



ПОИСК



Продукты сгорания

Продукты сгорания топлива

Энергия внутренняя

Энергия внутренняя внутренняя



© 2025 Mash-xxl.info Реклама на сайте