Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линия кривая уровня

В соответствии с требованиями, изложенными в п. 15, выполнено экспериментальное исследование работы привода при трех частотных режимах (п = 130, 260, и 420 мин ) рабочего органа 8. На рис. 20 дана зависимость уровня звука от частоты вращения рабочего органа для р = 0,30 сплошная линия - эксперимент, штриховая - расчет). С учетом этого построены показанные на рис. 21 экспериментальная (сплошная линия) и расчетная (штриховая линия) кривые уровней звука для = 0,30. С  [c.52]


Геометрически двумерные функции плотности распределения вероятностей представляются поверхностями в пространстве х, х2,р , х2) . На рис. 2.10 в качестве примера приведены функции плотности совместного распределения двух вибрационных сигналов, измеренных на испытуемом и нагружающем редукторах стенда [38]. Поверхности здесь изображены в виде линий равного уровня на каждой кривой функция p xi, х ) имеет постоянное значение. Из рис. 2.10 хорошо видно, что при изменении нагружающего момента двумерные функции плотности распределения, как и одномерные (см. рис. 2.1), существенным образом видоизменяются.  [c.54]

На рис. 2.11 представлены линии постоянного уровня функции плотности двумерного распределения (2.22). Они изображены в безразмерных координатах zj = (a i — tii)/ai и Z2 = (хг — 1x2)/ог-Уравнение кривых постоянного уровня можно найти, приравняв константе показатель экспоненты в формуле (2.22). Произведя замену переменных г/i = Zi+22 и г/2 = zi—zg, нетрудно показать, что эти кривые являются эллипсами с отношением главных осей, равным [(1 + г)/(1— На рис. 2.11 значение коэффи-  [c.56]

Муаровые полосы, соответствующие одинаковым перемещениям в каком-либо направлении, являющимся непрерывными функциями координат, обладают свойствами линий равного уровня (горизонталей). Во внутренних областях исследуемой поверхности они образуют замкнутые кривые, а разомкнутые кривые начинаются и заканчиваются на контуре. Муаровые полосы, соответствующие различным значениям перемещений и имеющие свой порядковый номер, не пересекаются.  [c.550]

Изотермы установившегося температурного поля по сечению цилиндра приведены на рис. 50,6. Там же в увеличенном масштабе изображено положение штампа (кривая 2) и радиальные перемещения наружной поверхности цилиндра (кривая 3). Зона контакта наружной поверхности с параболоидом занимает область — 0,033 z 0,033 м. Кривая 1 — контактное давление при взаимодействии цилиндра с параболоидом. Здесь же показаны линии равного уровня осевых напряжений по сечению цилиндра. Максимальный уровень сжимающих напряжений достигается на наружной поверхности в  [c.150]

Доказательство. Функция х/<7 гармонична как действительная часть аналитической функции (4.27). Геометрическое-место у. = О перегибов линий тока состоит из кривых уровня х/<7, которые должны начинаться и оканчиваться на границе, поскольку функция х/<7 гармонична. Кроме того, линии перегиба (геометрические места точек перегиба), начинающиеся на свободной границе, не могут ни оканчиваться на свободной границе (исключая точки отрыва), ни уходить в бесконечность. В противном случае образовалась бы область, ограниченная свободными линиями тока и линиями перегиба, а на ее границе либо функция х/<7, либо ее нормальная производная й ад )1йз обращались бы в нуль при этом из тождества Грина следовало бы, что функция х/<7 должна быть постоянной, что невозможно ). Такие же рассуждения показывают, что никакие две линии перегиба не могут оканчиваться в одной и той же точке перегиба на обтекаемой стенке или в ее концах.  [c.105]


Кривые, инцидентные плоскостям уровня, назреем кривыми уровня по аналогии с названием соответствующих прямых (г. е. фронталью, горизонталью и профильной кривой). Пример горизонтали дан на рис. 202. Фронтальная проекция такой линии представляет собой прямую (или отрезок), перпендикулярную линиям связи (почему ), горизонтальная — фигуру, равную и подобно расположенную самой кривой в пространстве (см. /43/).  [c.68]

Все это станет более понятным и наглядным, если сказанное изобразить графически (фиг. 16). На горизонтальной оси отложено время в секундах, на вертикальной — температура. Проведем горизонтальные линии на уровне 700, 600, 500, 400, 300, 200°. Нанесем на них точки Н — начало распада и К — конец распада аустенита для каждой температуры. А теперь соединим плавными кривыми одноименные точки. Мы получим хорошо известную всем металловедам С-о б р а з ft у ю кривую. Видно, что в интервале температур 550—600° аустенит наименее  [c.34]

Величина т] (, (кривая /) определяется в каждый момент времени прежде всего загрузкой линии, величина — уровнем эксплуатационной надежности. В период пуска и освоения линии технические и организационные потерн велики, затем они снижаются, при этом эксплуатационная надежность стабилизируется на неко-тором уровне (кривая 2), в то время как фактическая производительность увеличивается вследствие роста производственной программы, улучшения организации обслуживания и т. д.  [c.69]

Рассмотрим варианты решений, получающиеся при Ро = Ра. Рво Ры-этого проведем на графике оптимальных параметров (см. рио. 8.4, а) горизонтальную линию на уровне J = 1,4, которая пересечет соответствующие кривые (t/оит) и (1/х)опт (i onx) в точках с координатами, указанными в табл. 8.1.  [c.212]

Коллинеарные конфигурации. Другая смена типа движения происходит при касании линии пересечения уровней интегралов (3.28) с кривыми нулевой площади, определяемыми уравнением  [c.57]

В совокупности кривые 71 и Г1 образуют линию постоянного уровня функции 1т/(<7) и делят комплексную плоскость д на пять областей (рис. 14.5). Величина - /(< ,)] отрицательна в областях 1-Ш и  [c.307]

Определение видимости линии пересечения относительно плоскостей проекций. Заданные поверхности симметричны относительно фронтальной плоскости уровня Г, следовательно, симметрична и линия их пересечения относительно той же плоскости. Поэтому на плоскости проекций П- проекции видимой и невидимой частей линии пересечения совпадут (это будет кривая второго порядка —см. п. 36.5).  [c.76]

Постройте криволинейные проекции прямой I, окружности т, эллипса к на плоскость уровня Д проходящую через ось j, и на проецирующую плоскость А, параллельную оси j, проецированием множеством окружностей, центры которых принадлежат оси J, а их плоскости перпендикулярны оси ] Убедитесь, что криволинейные проекции данных линий являются алгебраическими кривыми, порядки которых в 2 раза больше порядков данных линий. Докажите справедливость этого результата.  [c.191]

Если эта точка расположена выше уровня в резервуаре О, то насос питает оба напорных резервуара. В этом случае строим зависимость суммарного расхода в трубах ВС и ВО от пьезометрического уровня в узле В точка ее пересечения с кривой Яд определяет пьезометрический уровень в узле В, расходы в трубах и режим работы насоса (рабочую точку системы). Если точка пересечения кривых Яд и ВС расположена ниже уровня в резервуаре О, последний питает совместно с насосом резервуар С. В этом случае (штриховые линии на рис. XIV—12) строят зависимость суммарного расхода в трубах АВ и ОВ от пьезометрического уровня в узле В (путем суммирования кривых Яд и О В по расходам) точка пересечения этой кривой  [c.417]

Профиль местности (рис. 18.34) по заданному на топографическом чертеже направлению строят, например, методом перемены плоскостей проекций следуюшим образом. Параллельно заданной прямой А—Л проводят вне чертежа прямую, которую называют базой профиля. Перпендикулярно базе профиля проводят прямую и на ней откладывают единицы масштаба. Через полученные точки проводят линии уровня (проекции горизонталей). Проведя перпендикуляры к базе профиля из точек на плане до пересечения линии соответствуюшего уровня, получают ряд точек. Соединив их плавной линией, получают кривую профиля местности в данном направлении. Примеры профиля в направлении Б—Б приведены выше (см. рис. 18.33) б — в одинаковом масштабе в — масштаб по высоте в 5 раз крупнее масштаба по длине.  [c.418]


Метод учета одного экстремума между двумя соседними точками пересечениями среднего уровня. В этом методе (рис. 24) учитывают только один наибольший экстремум между калсдыми двумя пересечениями кривой процесса с линией среднего уровня, а именно, на отрезке АВ берется о , на ВС — Одз, на D — о з на DE — и т. д. Эту совокупность используют для построения функции распределения ампли-  [c.285]

КИМ ооразом, процесс ползучести плиты оказывается весьма сложным в первую очередь из-за того, что в начальный момент времени штамп не полностью входит в контакт с плитой. Наблюдаемое в первые часы ползучести падение напряжений приводит к заметному отличию напряженного и деформированного состояний в плите из не- и разносопротивляющегося материалов. В дальнейшем по мере увеличения зоны контакта наступает период времени, когда напряженное состояние плиты практически не зависит от свойств материала. Это видно из картины изолиний интенсивности напряжений, изображенной на рис. 46. На рис. 46, а линии равных уровней (в МПа) приведены для = 30 ч, а на рис. 46, б — для t = 150 ч. Заметное различие кривых при = 30 ч практически исчезает при t = 150 ч.  [c.146]

Сетка конечных элементов содержала 1260 узлов. Время, необходимое для одной итерации на ЭВМ БЭСМ-6, составило 2,5 мин. Результаты расчетов приведены на рис. 62 и 64 Сплошными кривыми здесь показаны линии равных уровней а, 10 (в МПа) для случая абсолютного проскальзывания по всем трем контактным площадкам, штриховыми — для сухого трения (/тр = 0,4).  [c.186]

Линии постоянного уровня функции тока, т. е. кривые Ц/ х, сопз , обладают  [c.112]

Рассмотрим группу линий, имеющих приблизительно одинаковые верхние энергетические уровни. Интенсивности таких линий не зависят от температуры, а пропорциональны вероятностям переходов Ап п"- Эти вероятности могут быть экспериментально определены измерением относительных интенсивностей /о какого-либо источника света с малой оптической толщиной. Пусть в источнике с большой оптической толщиной наблюдаемые интенсивности равны /. При этом более сильные линии будут больше ослабляться в результате поглощения, чем более слабые. Зависимость 1п(///о) от /о будет иметь вид, изображенный на фиг. 2. Горизонтальный участок кривой в левом углу фиг. 2 соответствует линиям, для которых самопоглощение пренебрежимо мало и которые могут использоваться для температурных измерений без введения поправок. Для более интенсивных линий кривая дает поправку на влияние самопогло-щения.  [c.295]

Поскольку каждому значению Уч соответствует свое значение Гч, то указанное семейство кривых можно рассматривать как линии равного уровня седлообразной поверхности связи Г(уо, 5о, Ич). Зависимость Tч vц) согласно выражению (6.13) имеет максимум при ич—ЬчЮч, поэтому крайняя левая кривая на рис. 6.6 соответствует ич=Ьч1Сч и Гч=Гчтах. Одна ИЗ кривых, расположенных правее, соответствует такой стойкости Гч = Го, при которой функция  [c.162]

Любое изменение Гч.н вызывает возрастание двух последних слагаемых в целевой функции (6.8), поскольку Гч.н соответствует минимуму функции (6.33). Однако увеличение Гч.н приводит согласно рис. 6.6 к тому, что линии равного уровня поверхности связи и поверхности Со, соответствующей первому слагаемому в правой части функции (6.8), касаются при меньшем значении Ио, а. следовательно, при большем значении Со. Уменьшение же 7ч.н приводит к касанию линий равного уровня при меньшем значении Со-Следовательно, целесообразно уменьшать Гч.н, т. е. увеличивать Уч.н, еще больше отдаляясь от ич.пл = Ьч1Сч. При этом должно соблюдаться условие Гч=Го. Поэтому То должно также уменьшаться, причем за счет увеличения Vo, так как касание кривых на рис. 6.6 рассматривается в точках, где ио>Ьо/Со, что соответствует участкам кривых 3 я 4 на рис. 6.1, расположенных правее экстремума.  [c.163]

Оптимальному значению То может соответствовать бесконечно большое число сочетаний (ио, 5о), т. е. точек на кривой То = = Tч = onst. Только одна из них соответствует условному минимуму целевой функции (6.8). Это будет точка, в которой при заданной стойкости ее первое слагаемое имеет минимально возможное значение. На рис. 6.6 такими точками являются точки касания верхних ветвей линии постоянного уровня поверхности связи и линий Со=соп51. Геометрическим местом таких точек является кривая 1, вдоль которой угловые коэффициенты касательных к. указанным кривым равного уровня одинаковы.  [c.163]

Угловой коэффициент касательных к левым ветвям кривых Со = сопз1 определяется выражением (6.26), а угловой коэффициент касательных к верхним ветвям линий равного уровня поверхности связи (6.32) — выражением  [c.163]

Уравнение (6.37) —это уравнение гиперболы с асимптота ми So = b , Vo = bol o- На этих прямых лежат экстремумы рассматриваемых линий равного уровня. Уравнение (6.37) позволяет избежать трудоемких вычислений при уточнении значений uo, Sq, по следующим причинам. По найденному из уравнения (6.34) значе-.нию Учп находим Гч.н- Далее находим координаты Зон, Уоп начальной точки К на кривой 1. Для этого совместно решаем уравнения <6.37) п (6.32) при =  [c.164]

Нулевые линии для уровня в кривой проводятся от нулевых линий для уровня в прямой на расстоянии нормального возвышения для данной кривой с учётом поправки на центробежную силу. В тех случаях, когда проведённая в кривой нулевая линия со всей очевидпостью ие совпадает с фактической нулевой линией по характеру записи, то начальнику путеизмерителя разрешается повысить или понизить нулевую линию на протяжении всего участка кривой, имеющего один радиус по паспорту, на одинаковую величину, со-  [c.331]

Потенциальная энергия молекулы зависит от междуядерного расстояния. При сближении ядер преобладают силы отталкивания, при удалении — силы притяжения. На некотором расстоянии силы отталкивания и притяжения уравновешивают друг друга и потенциальная энергия в этой точке минимальна. Абсолютная величина минимума потенциальной энергии соответствует энергии электронного состояния 11е. Разность между энергией при бесконечном удалении ядер и этой величиной дает энергию диссоциации (с точностью до энергии нулевых колебаний). Форма и положение потенциальной кривой зависят от электронного состояния, так что каждой молекуле принадлежит несколько кривых. На рис. 5.20 и 5.21 изображены потенциальные кривые молекул Ог и N0, построенные на основе спектроскопических данных ). На рисунках проведены горизонтальные линии, соответствующие уровням колебательной энергии в каждом из электронных состояний.  [c.268]


На рис. 42 показаны кривые ге = onst, т. е. линии равного уровня депланации для рассматриваемого сечения.  [c.262]

В качестве примеров на рис. 14 приведены фазовые портреты — линии равного уровня функции (3.35) — для относительного движения трех и шести хетонов, при условиях существования, соответственно, трех и шести радиальных осей симметрии. При этом области 3 принимают в первом случае вид шестиугольной, а втором — двенадцатиугольной звезды (аналогично тому, как для случая двух хетонов эта область имела форму четырехугольной звезды — рис. 9а). Следует отметить, что в данном случае фазовые кривые построены в осях (х, у) при различных значениях 7 (см. подпись к рисунку), и при переходе к координатам (7а , 7у) линейный масштаб на рис. 14Ь увеличится вдвое.  [c.574]

Следовательно, кривые уровня функции квазивремени на (А,В)-плоскости подобны линиям уровня функции АВ, однако две сепаратрисы, соответствующие нулевому уровню, слегка деформированы (рис. 125).  [c.298]

Для удобства энергетические уровни можно разделить на группы с интервалом энергии 0,1 kT. Если непрерывная кривая на рис. 8 аппроксиро-вана ломаной линией с интервалом энергии 0,1 kT, значение абсциссы для каждою вертикального отрезка, умноженное на 0,1, представляет долю общего числа частиц с энергией, соответствующей данному интервалу энергии.  [c.110]

Однако ни одна поверхность, кроме плоскости, не может быть поверхностью уровня. Но любая поверхность содержит три семейства линий уровня — семейства кривых, получающихся при сечении поверхности тремя семействами плоскостей уровня. Например, на рис. 2.40 и.зо6ражена топографическая поверхнехть с каркасом горизонта лей.  [c.101]

Каждая из его вершин, двигаясь в плоско-сгях уровня, опишет плоскую кривую, фронтальная проекция которой будет совпадагъ с одноименным следом плоскости. Это означает, 410 фронтальные проекции вершин треугольника (точек любой фигуры Ф) будут двигаться по прямым, перпендикулярным линиям связи. Что же касается проекции треугольника на плоскость П , то она может занять произвольное положение, не изменив при этом своей формы.  [c.64]


Смотреть страницы где упоминается термин Линия кривая уровня : [c.357]    [c.82]    [c.34]    [c.79]    [c.145]    [c.477]    [c.526]    [c.284]    [c.151]    [c.152]    [c.143]    [c.177]    [c.152]    [c.166]    [c.116]    [c.76]    [c.347]   
Начертательная геометрия _1981 (1981) -- [ c.68 ]



ПОИСК



Линия уровня



© 2025 Mash-xxl.info Реклама на сайте