Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Повышение температуры матрицы

Повышением температуры матрицы с 20 до 100° С ( 3= 1180° С, Тд=4—5 с, Р=54 МН/м ) характер кривых перемещения пуансона при прессовании отливок типа втулок из бронзы Бр.АЖ9-4, схема изготовления которых показана на рис. 33,6, не изменяется, но абсолютная величина возрастает в сравнимые моменты времени (рис. 39). Это можно объяснить тем, что при более высокой начальной температуре матрицы до момента приложения давления образуется твердая корка меньшей толщины и прочности. Поэтому она сжимается (деформируется) в большей степени.  [c.82]


Если частица М(С0)5, образовавшаяся в возбужденном состоянии ЛJ, сможет передать энергию и перейти в основное состояние до рекомбинации, то маловероятно, чтобы два фрагмента в основных состояниях реагировали друг с другом. (Поскольку система в целом не имеет избытка энергии и рекомбинация фрагментов запрещена по симметрии.) Действие излучения низкой энергии в таком J чae заключается в переводе М(С0)д из основного в возбужденное состояние ЛJ, в котором этот фрагмент может реагировать с СО, образуя М(СО)б- По-видимому, простейшей проверкой этой альтернативы могло бы быть повышение температуры матрицы до достижения интервала отжига, когда удаленные друг от друга фрагменты получили бы возможность сблизиться.  [c.80]

Повышение температуры матрицы во время ее осаждения 29 Подвижность частиц в матрице 23-30  [c.169]

Значительное влияние на свойства композиций при повышенных температурах может оказывать физико-химическое взаимодействие между волокнами и матрицей, приводящее к растворению или разупрочнению волокон н образованию прослоек хрупких фаз на границе раздела.  [c.637]

Экспериментальное исследование испарительного жидкостного охлаждения пористого металлокерамического твэла (результаты приводятся ниже), показало, что распределение температуры внутри него существенно зависит от режима истечения охладителя (рис. 7.1). Вариант б соответствует истечению двухфазной смеси, а — перегретого пара. Причем если в первом случае выполняется условие адиабатичности в начале зоны испарения (максимум температуры Т пористого материала при Z =L), то во втором имеет место монотонное повышение температуры проницаемой матрицы как в начале Z = , так и в конце Z = К зоны испарения и условия адиабатичности здесь не выполняются.  [c.160]

Диффузия вызывает перемещение или растворение препятствий в окружающей матрице, освобождая путь для движения дислокаций. Таким препятствием могут быть точечные дефекты, подвижность которых сильно увеличивается с повышением температуры. При высоких температурах благодаря диффузионным процессам возможна коагуляция — укрупнение больших частиц за счет растворения мелких или сфероидизация — приобретение включениями избыточной фазы округлой формы из первоначально вытянутой. Сфероидизация и коагуляция приводят к уменьшению протяженности межфазных границ, освобождая дислокации от закрепления и увеличивая длину их свободного пробега.  [c.153]


Одновременное снижение начальной температуры матрицы и повышение температуры заливки, независимо от величины давления, приводит к образованию сквозной столбчатой структуры.  [c.116]

Плотная стеклокерамическая пленка тормозит диффузию кислорода. Однако, как показал Журавлев [7], стеклокерамическая пленка при повышенных температурах является окислителем матрицы. Окисление происходит за счет кислорода, входящего в структурную сетку стекла, но наличие алюминидного подслоя замедляет процесс окисления.  [c.167]

Во всех рассмотренных выше случаях усадка матрицы была сведена к минимуму выбором в качестве материала смол с комнатной температурой отверждения. Однако в моделируемом материале, который отверждается при повышенной температуре, усадочные напряжения могут быть заметными, Пример такого  [c.525]

Специалисты по технологии производства композитов с алюминиевой матрицей придерживаются общей точки зрения относительно оптимальных условий изготовления композита. Если поддерживать, постоянство двух из трех параметров технологического процесса— температуры, давления и продолжительности обработки, то с ростом значения третьего параметра прочность при растяжении вначале растет, затем проходит через максимум и потом снижается. Эти данные согласуются с моделью, предполагающей, чтО на поверхности раздела имеется окисная пленка. Рост прочности при растяжении объясняют уменьшением пористости и улучшением окисной связи между матрицей и волокнами. Снижение прочности при растяжении с увеличением давления, температуры или продолжительности процесса происходит из-за общего разрушения окисной связи и излишнего развития реакции. Оптимальное значение параметров отвечает равновесию между завершением процесса образования связи и началом развития локальной реакции на участках разрушения пленки. При повышенной температуре или продолжительности процесса прессования разрушение пленки может происходить по механизму сфероидизации, а при повышенном давлении — механическим путем вследствие сдвига. Однако наличие оптимальных значений параметров процесса приводит к заметным изменениям состава и строения поверхности раздела. Эти изменения имеют место как в пределах одного образца композита, так и от одной партии горячепрессованного композита к другой, поскольку трудно тщательно контролировать состояние поверхности компонентов, технологические циклы и все остальные параметры, определяющие характеристики поверхности раздела.  [c.170]

Как с очевидностью следует из проведенного обсуждения, методу пропитки свойственны некоторые трудноразрешимые проблемы. При изготовлении композита пропиткой чрезвычайно важно обеспечить смачивание волокон расплавом. Существенное повышение температуры заливки (например, значительно выше 7пл алюминия) или использование поверхностно-активных веществ может привести к неполному смачиванию в практически важных системах. Вследствие применения указанных приемов происходит недопустимое ухудшение механических свойств волокна, а значит, и всего композита. Покрытия, в частности вольфрамовые, облегчают смачивание, однако при такой толщине, которая приемлема для тонких волокон, они не обладают достаточной долговечностью в контакте с жидким металлом. Волокна большого диаметра (>0,25 мм) в прочных матрицах, которые представляются практически интересными, механически повреждаются (двойникова-нием или скольжением) при охлаждении от температуры пропитки.  [c.333]

Остается спорным вопрос, какие свойства матрицы оказывают наибольшее влияние на прочности слоя при одноосных нагружениях. Обычно дискуссия сводится к двум видам свойств, а именно начальным, например к модулю упругости, или конечным, например к прочности или к удлинению. Из рис. 45 видно, что с повышением температуры предельное удлинение матрицы растет, а начальный модуль уменьшается. Экспериментальное определение прочностей слоя показывает их снижение с ростом температуры. По-видимому, это означает, что начальные свойства матрицы более важны для прочности композита, чем конечные [12].  [c.159]

Значительные усилия направляются на разработку армированных волокнами металлических композитов, в которых металлическая матрица усиливается высокомодульными волокнами. Одна из главных целей разработки таких композитов состоит в использовании их в качестве конструкционных материалов для элементов конструкций, которые должны выдерживать высокие напряжения при повышенных температурах. Для подобного класса композитов кажется логически оправданным выбор вольфрамовых волокон благодаря их высокой прочности на растяжение как при комнатной, так и при повышенной температурах и благодаря их устойчивости при высоких температурах. Боль-  [c.275]


Предварительные исследования по совместимости показали, что между волокном и матрицей в тугоплавких армированных волокнами жаропрочных сплавах возникают реакции легирования [50]. Также показано, что если реакции легирования возникают между матрицей и волокном, то свойства композита улучшаются. В результате был осуществлен ряд исследований для подбора пар материалов волокно — матрица, наиболее совместимых друг с другом. В [51] исследованы свойства длительной прочности при повышенных температурах (1093 и 1204 °С) для четырех проволок Т7М (молибден, 0,5% Т1, 0,08% 2г, 0,015% С) ЗВ (вольфрам, 3% рения) КР (вольфрам, 1% тория) и 21808 (промышленный вольфрам). Обнаружено, что проволоки 21808 и ЗВ были более совместимы с исследованными никелевыми сплавами, чем проволоки NF или Т2М. Овойства длительной прочности проволок в отсутствие материала матрицы были такие- же.  [c.277]

С повышением температуры матрицы до 250° С получается удовлетворительное качество поверхности с мелкими спаинами, глубина залегания которых находится в пределах 0,1—0,5 мм при температуре штампа 280—300° С спаины почти полностью 114  [c.114]

Изучение изменений интенсивности полое. Чтобы подтвердить принадлежность обнаруженных полос однсй частице, следует проверить идентичность изменения их интенсивности при вариации условий эксперимента. Варьируемые параметры, которые могут различаться для разных методов получения частиц, включают изменение продолжительности фотолиза и длины волны используемого излучения, повышение температуры матрицы (что приводит к исчезновению нестабильных частиц и образованию новых продуктов в ходе реакций, контролируемых диффузией), изменение концентрации реагентов и матричного разбавления, а также замену матричного вещества. Обычно приходится проводить несколько отдельных экспериментов, чтобы обеспечить необходимый диапазон изменений условий.  [c.98]

Корпуса и крышки бачков прессуют на 200—250-г прессах. Обогрев. пресс-форм осуществляется с помощью воды. Приме-нение.м повышенной температуры матрицы добиваются очень хорошего блеска наружной поверхности бачка. Время выдержки в форме корпуса составл-яет 6—7 мин., а крышки — 4—5 мин.  [c.9]

С) приводит к образованию в местах, где располагались зоны ГП-2, дисперсных (тонкоиластинчатых) частиц промежуточной 0 фазы, не отличающейся ио химическому составу от стабильной 0-фазы ( uAl. ), но имеющей отличную кристаллическую решетку. 0 -фаза частично когерентно связана с твердым раствором (рис. 161,в). Повышение температуры до 200—250°С приводит к коагуляции метастабильной фазы и к образованию стабильной 0-фазы (рис. 161, г), имеющей с матрицей некогерентные границы. Таким образом, при естественном старении образуются лишь зоны ГП-1. При искусственном старении последовательность структурных изменений в сплавах А1—Си можно представить в виде следующей схемы ГП-1  [c.325]

Устройства транспиращюнного охлаждения предназначены в основном для использования в форсированных условиях, когда предъявляются особо жесткие требования к надежности. Их надежность в значительной мере определяется устойчивостью, т, е. способностью противостоять внешним возмущениям. Однако существенное повышение температуры и вызываемое им заметное увеличение динамической вязкости газообразного охладителя при движении его сквозь матрицу создают благоприятные условия для возникновения неустойчивости всего процесса. Неустойчивость проявляется в том, что при определенньгх условиях незначительное изменение одного из параметров приводит к неконтролируемому снижению расхода охладителя, сопровождаемому быстрым повышением температуры стенки и ее разрушением.  [c.68]

С повышением температуры вытекающего перегретого пара и температуры пористого каркаса на паровом участке дпина области испарения практически не изменяется (см. рис. 7.3), но вся она постепенно перемещается к внутренней поверхности элемента. Интересно отметить, что при Гз (5) = 100 °С, когда испарение охладителя завершается на внешней поверхности твэла, имеем к = Ei= I = 0,128 к 1 =0,872. Эти величины существенно отличаются от результатов, приведенных на рис. 7.3, экстраполяцией данных в крайнюю левую точку Гз (б) = 100 °С. Это значит, что после высыхания внешней поверхности при последующем незначительном увеличений объемного тепловыделения происходит ре> кое сокращение длины зоны испарения вследствие углубления ее с внешней поверхности на значительное расстояние внутрь пористого элемента. При этом температура материала на внешней поверхности возрастает и почти вся вьщеляемая на высохшем паровом участке теплота, до этого непосредственно поглощавшаяся испаряющимся охладителем, теперь передается теплопроводностью в зону испарения. При дальнейшем повьь шении объемного тепловыделения и увеличении температуры вытекающего перегретого пара возрастает температура пористой матрицы на паровом участке, но ддина зоны испарения практически не изменяется и вся она постепенно перемещается к внутренней поверхности элемента.  [c.166]

Упрочнение, обусловленное наличием дисперсных частиц второй фазы (Тд.ч), может быть прямым и косвенным. Прямое упрочнение обусловлено непосредственным взаимодействием дислокаций с дисперсными частицами, которые являются барьерами для скользящих в процессе пластической деформации дислокаций. Косвенное взаимодействие связано с возможностью повышения стабильности неравновесного структурного состояния и повышения температуры рекристаллизации при наличии дисперсных частиц второй фазы. Здесь рассматривается прямое взаимодействие. В модели Орована движение дислокаций рассматривается в мягкой и вязкой матрице, содержащей жесткие равноосные частицы упрочняющей матрицы. По Оровану, напряжение определяется необходимостью выгнуть дислокацию между соседними частицами в полуокружность диаметром Л (Л — расстояние между частицами). Поэтому х .ч = 2Р/Ы., где F= = Gft /2 — линейное натяжение. Тогда Тд.ч=ОЬА.  [c.221]


Часто сверхпроводниковые провода покрывают стабилизирующей оболочкой из меди или другого хорошо проводящего электрический ток и тепло металла. Это дает возможность избежать повреждения основного материала сверхпроводника при случайном повышении температуры и нарушении сверхпроводимости з отдельных участках провода. Более того, в ряде случаев с успехом применяют композитные ( многофиламентные ) сверхпроводниковые провода, в которых большое число тонких (нитевидных) сверхпроводников заключено в массивную матрицу из меди или другого несверхпроводникового материала. Как видно из приведенных примеров, известные сверхпроводники имеют весьма низкие температуры перехода Ткр  [c.25]

Протяженность зоны столбчатых кристаллов (Z t) уменьшается при повышении начальной температуры прессформы, снижении температуры заливки и времени выдержки расплава в матрице до приложения давления, а также при увеличении диаметра слитка (рис. 54). Такое влияние объясняется тем, что большинство из перечисленных параметров, например повышение температуры прессформы и увеличение диаметра слитка, способствует уменьшению скорости охлаждения кристаллизующегося расплава.  [c.108]

Общие замечания. Нарушение сплошности и несущей способности пространственно-армированных композиционных материалов при повышенных (выше 250 °С) температурах вследствие сравнительно низкой теплостойкости матрицы ограничивает температурный диапазон их применения. Решение задачи упрочнения матрицы в целях приближения ее прочности при повышенных температурах к высокому температурному сопротивлению углеродных волокон привело к появлению углеродной (или графитовой) матрицы и композиционных материалов на ее основе. Создание нового класса высокотемпературных материалов, получивших название углерод-углеродных композиционных материалов, описано в работе [109] там же приведена библиография по этим материалам. Первоначально со.зданные углерод-углеродные композиционные материалы основывались на двухнаправленном армировании. Они обладали лучшей прочностью в плоскостях армирования по сравнению с монолитным поликристаллическим графитом, но уступали по прочности, нормальной к плоскости армирования. Переход к пространственно-армированным материалам устраняет эту проблему [108, 114, 123]. Пространственное армирование резко повышает сопротивление этих материалов к действию нестационарных температурных напряжений и абляционную стойкость. Разработке и созданию пространственно-армированных материалов на основе углеродной матрицы уделяется большое внимание [106, 107].  [c.167]

Опыт применения газотерыических покрытий триботехнического назначения показывает, что они являются эффективным средством увеличения долговечности деталей и машин в целом при норма.льных и повышенных температурах. Широкое распространение среди таких покрытий нашли покрытия состава Ме—МеС. С ростом температур эксплуатации все большее влияние на эксплуатационные характеристики покрытии оказывает согласование теплофизических свойств твердой фазы покрытия и матрицы с аналогичными свойствами подложки. В связи с этим возможности выбора МеС номере роста температуры сужаются и при температуре 973 К находит применение лишь СГ3С2.  [c.154]

Ввиду того что продукты типа (2) образуются выше 350 °С, а типа (4), хотя могут образоваться и при сравнительно низких температурах, но испаряются из образца выше 350 °С, по соотношению А = Ь/ с1п), определенному при нагреве до 300 °С, можно характеризовать стабильность полимерной матрицы при повышенных температурах, вплоть до полного разложения полимера. Чем ниже значение коэффициента А, тем в большей степени процесс идет в сторону деполимеризации с образованием циклосилоксанов и обусловливает  [c.222]

Исследование способов, позволяющих замедлить рост зоны взаимодействия, является очень важным аспектом проблемы разработки практически ценных композитов. Как указывалось выше, матрицы, представляющие иаибольший практический интерес, обычно более реакционноспособны, чем матрицы, на примере которых демонстрировали справедливость теорий композитов. Проблема дополнительно осложняется тем обстоятельством, что композиты с металлической матрицей особенно нужны для эксплуатации при повышенных температурах. Исследование кинетики диффузионных процессов и выяснение механизмов диффузии являются основными условиями для построения строгой теории поверхностей раздела и для решения с ее помощью проблемы получения требуемых характеристик поверхности раздела. Исследование процессов и механизмов диффузии необходимо проводить применительно к той области толщин реакционной зоны, которая характерна для практически ценных композитов часто это означает, что объектом исследования должны стать зоны толщиной менее 1 мкм. Рост реакционной зоны, особенно в характерных для композита условиях стеснения, нередко приводит к изменению механизма диффузии. Рэтлифф и Пауэлл [30], например, наблюдали изменение механизма диффузии при взаимодействии между титановыми сплавами и карбидом кремния при толщине зоны 10 мкм и связали его с появлением новых продуктов реакции. Хотя столь большая толщина находится за пределами интересующей нас области, эти данные подтверждают изменение механизма диффузии на поздних стадиях роста реакционной зоны. Впрочем, могут иметь место и более тонкие изменения, обусловленные увеличением концентрации вакансий.  [c.29]

Потребность в композитных материалах, состоящих из термодинамически несовместимых компонентов, при искусственном объединении которых происходят диффузия через поверхность раздела и сопутствующие вредные эффекты, привела к интенсивной разработке барьерных слоев, предотвращающих диффузию между составляющими композита. Применение воло кон бора, покрытых карбидом кремния (борсик) и нитридом бора для упрочнения алюминиевых сплавов, заметно снизило скорость реакции между волокном и матрицей (гл. 3). Благодаря этому были созданы композиты, прочность которых в условиях повышенных температур сохранялась много дольше. Таким образом, дополнительная стоимость защиты волокон компенсируется улучшением свойств композитов.  [c.48]

Если волокна пластичны, то поперечные напряжения на поверхности раздела между волокном и матрицей могут даже более заметно влиять на разрушение композита, поскольку при напряжениях, соответствующих образованию шейки и разрушению изолированных волокон, шейкообразован ие в волокнах композита стеснено. Естественно, такое влияние уменьшается с увеличением содержания волокон, так как матрица, объемное содержание которой уменьшается, менее эффективно тормозит развитие шейки. Этот эффект, обнаруженный Пилером [48] в системе серебро— сталь, наблюдали также Милейко [45] при повышенных температурах в Ni — W и Келли и Тайсон [34] —в Си — Мо и Си — W.  [c.54]

Ранее к третьему классу были отнесены системы, в которых реакция между упрочнителем и матрицей приводит к образованию слоя продуктов химического взаимодействия. Для композитов, изготовляемых диффузионной сваркой, реакция характеризуется коротким инкубационным периодом, в течение которого происходит-разрушение окисных пленок на поверхности каждого компонента. Напротив, в системах псевдопервого класса окисные пленки, по видимому, достаточно стабильны, и их разрушение, делающее возможной реакцию, происходит лишь после продолжительной выдержки при повышенных температурах. Почти мгновенное разрушение пленок в системах третьего класса обеспечивает высокую однородность толщины зон взаимодействия, а спорадическое разрушение пленок в системах псевдопервого класса ведет к крайней неравномерности реакции вдоль волокна и толщины зоньг взаимодействия. Это различие в форме реакционной зоны влияет на закономерности обусловленного реакцией понижения прочно- сти при продольном растяжении.  [c.155]


КОН бора проводились на воздухе они отчетливо выявили заметное снижение прочности при температуре ниже 811 К [37, 38]. С обнаружением интенсивной реакции между волокнами бора и расплавленной окисью бора (температура плавления 727 К) стало ясно, что одна из возможных причин разупрочнения — поверхностная реакция с воздухом. Последующие исследования проводились в атмосфере аргона, но предпринятые для исключения влияния кислорода меры были, как правило, недостаточны [И]. Напротив, если волокнО бора находится в титановой матрице, доступ кислорода к нему практически исключен это обстоятельство позволяет ответить на вопрос, применимы ли многие из этих характеристик прочности изолированных волокон к волокнам в составе композита. Роуз [28] начал в лаборатории автора работу по измерению прочности волокон бора при растяжении и сдвиге в высоком вакууме (<1,3-10- Па). Затем в статье Меткалфа и Шмитца [20] были приведены кривые температурной зависимости модуля и прочности при растяжении они представлены на рис. 13. Значения прочности были получены при кратковременном испытании с предварительной пятиминутной выдержкой при температуре испытания. Слабое увеличение прочности при повышении температуры от комнатной до 811 К объясняли тем, что приблизительно при этой температуре происходит переход от вязкого разрушения к хрупкому. С такой интерпретацией согласуются наблюдения Роуза о том, что пластическая деформация предшест-  [c.163]

В Великобритании, в Национальной технической лаборатории, было проведено исследование влияния поверхности раздела на поперечную прочность композита А1—20% нержавеющей стали [16]. Образцы композитов были получены путем горячего прессования пр И температуре 673—873 К затем эти образцы испытывали при комнатной температуре, с тем чтобы оценить влияние температуры изготовления на поперечную прочность. Поперечная прочность при комнатной температуре увеличивалась с повышением температуры изготовления до 795 К — по мере роста прочности связи. Поперечная прочность возросла в большей степени, чем следовало бы ожидать исходя из зависимости прочности матрицы от температуры прессования. С дальнейшим повышением температуры изготовления поперечная прочность снижается. Это, по мнению авторов, обусловлено тем, что разрушение инициируется на поверхности раздела, где имеется хрупкая фаза РегАЦ, обладающая малой прочностью.  [c.227]

Наиболее распространенным методом измерения адгезионной пр очности является вытягивание волокон из отлив1КИ смолы (рис. 14). На рис. 14, а приведены схема испытательной установки и ее наиболее важные части. Результаты иопытания (рис. 14,6) соответствуют либо нагрузке в момент разрыва волокон (растяжение), либо нагрузке в момент вытяжки волокон из матрицы (сдвиг). Прямые линии, проведенные через точки, соответствующие разрушающим нагруз ка м при сдвиге и растяжении волокон, пересекаются в точке, определяющей так называемую критическую длину волокна, при которой в матрице достигается полностью напряженное состояние, (рис. 14,6). Следует отметить, что эта длина очень незначительна для данной системы она составляет величину всего лишь трех диаметров волокна. Результаты, полученные при повышенной температуре, приведены на рис. 14, в, откуда легко определить критическую длину волокна. Очевидно, она зависит как от температуры испытания, так н от свойств компонентов, входящих в состав композита. В работе [21] описан еще  [c.54]

Для исследования напряженного состояния на поверхности раздела были разработаны аналитические методы. К ним относятся методы механики материалов, классической теории упругости и метод конечных элементов. Метод конечных элементов является наиболее универсальным и охватывает разнообразные граничные условия. Предполагаемая величина концентрации напряжений определяется условиями на поверхности раздела. Теоретические данные показывают, что концентрация касательных напряжений на концах волокон зависит от объемной доли волокна и геометрии его конца. Из этих данных также следует, что радиальное напряжение на поверхности раздела изменяется по окружности волокна и может быть растягивающим или сжимающим в зависимости от характера термических напряжений, а также от вида и направления приложенной механической нагрузки. Следовательно, в обеспечении требуемой адгезионной прочности, соответствующей конкретным конструкциям, существует определенная степень свободы. Наличие пор и влаги на поверхности раздела, так же как и повышение температуры, ослабляют адгезионную прочность, в результате чего снижаются жесткость и прочность композитов. Циклическое нагружение почти не сказывается на онижении адгезионной прочности. Показатель расслоения является критерием увеличения локальных сдвиговых деформаций в матрице и модуля сдвига композита. Этот параметр может быть использован при выборе компонентов материалов с заданной адгезионной прочностью на поверхности раздела, И наконец, следует отметить, что состояние данной области материаловедения  [c.83]

РТспытапия до разрушения для определения остаточной прочности проводились затем при температуре 176° С. Кривая нагрузка — деформация была линейной до значения нагрузки, равной 85% максимальной, при которой отмечалось появление трещины во внешнем облицовочном листе обшивки, работающем на сжатие и расположенном над задним лонжероном и средней нервюрой. Конструкция продолжала нести нагрузку до 90% максимальной расчетной, затем произошло разрушение работающей на сжатие обшивки над передней средней балкой. Эти данные и результаты усталостных испытаний на сжатие элементов обшивки указывают на снижение показателей прочности при сжатии при воздействии температуры и циклического нагружения. Для обшивок, работающих на растяжение, эквивалентного ухудшения свойств не обнаружено. Отмеченное снижение прочности при сжатии, вероятно, обусловлено растягивающими напряжениями, возникающими в матрице слоистого материала, подвергнутого действию сжимающих нагрузок, особенно при повышенных температурах.  [c.150]

Матрицы из смол, как правило, при повышении температуры становятся менее жесткими и прочными, что видно на рис. 45, взятом из [47]. Прочности слоя при поперечном растяжении и сжатии, при внутрислойном сдвиге и продольном сжатии также убывают с ростом температуры.  [c.158]

Изучение длительной прочности и ползучести композитов с металлической матрицей осуществлялось рядом исследователей в основном на следующих материалах вольфрам — медь, вольфрам — никелевые сплавы и бор — алюминий. Большинство испытаний проводилось при повышенных температурах, что может привести к недооценке свойств композита из-за взаимодействия между волокнами и матрицей. Экспериментальная работа сопровождалась теоретическим анализом, подобным оценке прочности по правилу смесей . Мак-Данелсом и др. [39] исследована длительная прочность и скорость ползучести композитов на основе меди, армированных вольфрамовыми волокнами полученные данные сопоставлены со свойствами компонентов при помощи соответствующего анализа. Испытания проведены при 649 °С и 816 °С.  [c.297]


Смотреть страницы где упоминается термин Повышение температуры матрицы : [c.458]    [c.53]    [c.53]    [c.66]    [c.118]    [c.103]    [c.193]    [c.222]    [c.185]    [c.173]    [c.346]    [c.55]    [c.74]    [c.276]   
Матричная изоляция (1978) -- [ c.0 ]



ПОИСК



Повышение температуры матрицы во время ее осаждения

Температура повышенная



© 2025 Mash-xxl.info Реклама на сайте