Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легированные Теплопроводность

При выборе скорости нагрева необходимо учитывать химический состав стали. С увеличением С в стали уменьшается ее теплопроводность. Особенно резко уменьшается теплопроводность при легировании стали. Чем меньше теплопроводность стали, тем медленнее должен быть ее нагрев во избежание возникновения внутренних напряжений  [c.116]

Нагрев легированных сталей необходимо осуществлять крайне медленно, поскольку пониженная теплопроводность этих сталей может вызывать образование трещин и коробление. Обычно легирующие элементы повышают температуры и А , что ускоряет процесс диффузии. Время выдержки увеличивают для выравнивания температуры по всему объему изделия.  [c.170]


Аустенитно-ферритные (стареющие) стали, легированные Ti и А1, в которых при нагреве до 450—550° G образуются высокодисперсные фазы, вызывающие упрочнение, обладают высокой прочностью и теплостойкостью до 500° С. Эти стали по теплопроводности и объемным изменениям являются промежуточными между ферритными и аустенитными сталями  [c.268]

Технологические особенности сварки высоколегированных сталей связаны с их физическими свойствами и системой легирования. Пониженная теплопроводность и большое электрическое сопротивление (примерно в 5 раз больше, чем у углеродистых сталей) способствуют большей скорости плавления металла, большей глубине проплавления и коэффициенту наплавки, поэтому для сварки высоколегированных сталей требуются меньшие токи и погонные энергии по сравнению с углеродистыми, укороченные электроды при ручной сварке, меньше вылет электрода и больше скорость подачи проволоки при механизированной сварке.  [c.127]

Пониженная теплопроводность и большой коэффициент линейного расширения способствуют более сильному короблению по сравнению с углеродистыми сталями. Легирование влияет на вязкость металла и коэффициент поверхностного натяжения, для большинства высоколегированных сталей шов формируется хуже, чем для углеродистых.  [c.127]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]


Жаропрочные малоуглеродистые стали на основе 2-12% хрома благодаря сравнительно низкой стоимости, высокой теплопроводности, малого температурного коэффициента линейного расширения и хорошей релаксационной способности, возможности регулирования механических свойств в широких пределах посредством термической обработки и относительно высокой коррозионно-механической стойкости являются наиболее приемлемыми и отвечают эксплуатационным требованиям, предъявляемым к конструктивным элементам технологических установок нефтеперерабатывающих и нефтехимических заводов. Повышение содержания хрома и дополнительное легирование карбидообразующими присадками оказывают положительное влияние на коррозионную стойкость этих сталей в горячих средах основных процессов переработки нефти, коррозионная активность которых прежде  [c.94]

Температуру закалки берут на 50...60 С выше Асз и дольше выдерживают при этой температуре Легированные стали обладают пониженной теплопроводностью, поэтому для уменьшения перепада температуры по сечению их следует нагревать медленно.  [c.91]

Легирование высокочистого (99,9999 %) серебра марганцем чистотой 99,95 % также приводило к понижению теплопроводности (табл. 87).  [c.197]

Защитные и износостойкие покрытия обеспечивают возможность создания новых изделий-композиций, сочетающих высокую долговечность (износостойкость, специальные свойства) с достаточной надежностью (трещиностойкостью) повышают эксплуатационную стойкость деталей машин и инструментов по сравнению со стойкостью, достигаемой известными способами термической обработки позволяют восстанавливать изношенную поверхность и, следовательно, снижают потребности в запасных частях. С помощью покрытий получают особые свойства рабочей поверхности (например, жаростойкость, теплопроводность, заданный коэффициент трения) они дают экономию дефицитных и дорогостоящих металлов, использующихся для объемного легирования.  [c.3]

Качественно это можно понять из следующих соображений. В термогенераторах стремятся получить наибольший перепад температур между горячим и холодным концами полупроводника при возможно меньшей затрате тепловой энергии. Чем ниже теплопроводность полупроводника, тем больше, следовательно, величина термо-э. д. с. При этом уменьшать теплопередачу от горячего конца к холодному за счет удлинения полупроводника нельзя, так как при этом будет увеличиваться внутреннее сопротивление термогенератора и к. II. д. будет падать. По этой же причине выгодно иметь максимальную удельную электропроводность а полупроводника. Так как с увеличением степени легирования полупроводника а падает, а К и а растут, то для каждого полупроводника существует оптимальная степень легирования, обеспечивающая максимальную величину a olK, а следовательно, и к. п. д.  [c.262]

Высокая теплопроводность алмаза и металлической связки благоприятно сказываются на температурном режиме обработки. На-, пример, при алмазном хонинговании деталей из легированных сталей температура в зоне резания не превышает 50—70° С. Температурные деформации гильз цилиндров по этой же причине уменьшаются в несколько раз. С малым нагревом, очевидно, связано наблюдаемое часто при алмазной обработке упрочнение поверхностного слоя. Напряжения сжатия, равные 70—80 кгс/мм , фиксируются на глубине 10—20 мкм, при этом степень упрочнения, оцениваемая приростом твердости, колеблется от 30 до 60%. Широкое применение получает алмазное выглаживание (см. стр. 128) для материалов любой твердости, используемое не только для доводки, но и для упрочнения деталей малой жесткости.  [c.69]

Бериллиевые бронзы хотя и являются наиболее дорогими и дефицитными из всех медных сплавов, но в то же время характеризуются совокупностью ряда свойств, не имеющихся у других металлов и сплавов. Бронзы с содержанием 1,7—2,5% бериллия и легированные небольшими добавками никеля, кобальта, титана, марганца и других элементов обладают высокой химической стойкостью, износоустойчивостью и упругостью в сочетании с прочностью и твердостью, равной свойствам легированных сталей, а также высоким сопротивлением ползучести и усталости. Эти свойства бериллиевых бронз сохраняются до 315° С при 500° С прочность их снижается, но остается равной прочности оловянно-фосфористых и алюминиевых бронз при комнатной температуре. Для них характерна также высокая электропроводность, теплопроводность и неспособность давать искры при ударе. Применяются бронзы в виде полос, лент и других полуфабрикатов для изготовления особо ответственных деталей авиационных приборов и специального оборудования (мембран пружин пружинящих контактов некоторых деталей, работающих на износ, как, например, кулачки полуавтоматов в электронной технике и т. д.).  [c.240]


Возможность приближенного определения скоростей резания по действительному пределу прочности без учета теплопроводности для стали различных марок с одинаковой основой обусловлена не только малой разницей в коэффициентах теплопроводности, но и тем, что обычно изменение действительного предела прочности стали различных марок с одинаковой основой отражает и изменение их теплопроводности. В результате упрочнения основы металла как путем легирования, так м путем термической обработки теплопроводность его снижается обычно тем сильнее, чем больше упрочнение. Такое влияние упрочнения на теплопроводность  [c.170]

Совершенно различно поведение сплавов в отношении теплопроводности с увеличением температуры у железа и сплавов перлитного типа она сильно падает, а у сплавов и сталей аустенитного типа — увеличивается. Однако нельзя считать, что эта разница определяется только различным видом кристаллических решеток а и Y, она зависит также от дополнительного легирования сплавов.  [c.218]

Более высокая теплопроводность, прочность при повышенных температурах и сопротивление усталости ставят свинцовистую бронзу (особенно легированную оловом) на первое место среди всех подшипниковых сплавов, применяемых для наиболее мощных авиационных, танковых, автомобильных моторов ц дизелей.  [c.209]

Во второй период нагрева пластичность металла сильно возрастает, вследствие чего нагрев заготовок (слитков) можно вести уже с более высокой скоростью без риска вызвать опасные напряжения в металле и нарушения его целостности. Кроме того, у некоторых марок легированной стали теплопроводность с повышением температуры нагрева повышается,  [c.294]

Плотность чугуна, легированного 5—8% алюминия, равна 6,4—6,7 г/см К Его теплопроводность ниже, чем у серого чугуна на 20—30%. Чугун при указанном содержании алюминия становится ферромагнитным. Коэффициент линейного расширения 14,5-10 —16,0-10 . Чугун с пластинчатой формой графита, легированный 5—8% алюминия, имеет низкие механические свойства (табл. 53).  [c.212]

Вольфрам. Стали, легированные W в литом состоянии, применяют преимуш,ественно для изготовления литого инструмента. Вольфрамовая сталь, отличаюш,аяся значительно меньшей теплопроводностью, чем углеродистая, дает большие усадочные раковины и склонна к образованию трещин в горячем состоянии.  [c.5]

При легировании так же, как и при увеличении содержания примесей, теплопроводность титана, как правило, уменьшается. На рис. 8 показано влияние алюминия на теплопроводность титана при различных температурах по данным [42]. В области средних температур (100—500° С) уже первые порции алюминия (1,5—2,5% по массе) вызывают значительное уменьшение коэффициента теплопроводности (примерно на 30% при 150° С). Дальнейшее увеличение содержания алюминия сопровождается еще большим снижением коэффициента теплопроводности. Однако у сплава с содержанием алюминия около 5% теплопроводность оказывается выше, чем у менее легированных сплавов.  [c.21]

Применение железа в качестве основы позволяет повысить рабочие температуры в узле трения до 1000 - 1200 °С. Целесообразно легирование железа медью (улучшает теплопроводность основы, повышает прочность и твердость материала), никелем (улучшает механические свойства), вольфрамом (повышает коэффициент трения), марганцем, алюминием и кобальтом (повышают износостойкость материала).  [c.60]

Медь обладает хорошей пластичностью и прочностью, высокими показателями коррозионной стойкости,электро- и теплопроводности и вакуумной плотности. Благодаря этим свойствам медь применяется во многих отраслях промышленности химической, электротехнической, судостроении и др. В технике исполйзуют техническую медь разной степени чистоты Ш, М1, М2, М3, М4 и ее сплавы. Все сплавы на основе меди можно разделить на два типа , латуни (Л) и бронзы (Бр.) Латунь — сплав меди сцинком при содержании цинка более 4%. Применяют латуни простые, легированные только цинком, и специальные атуни, которые кроме цинка содержат и ряд других легирующих компонентов. Бронзы пред-етавляют собой сплавы меди, содержащие не более 5—6% цинка (обычно менее 4%).  [c.136]

Сапфир. Монокристаллы сапфира были рассмотрены в главе третьей в качестве материала подложек микросхем. При легировании ионами хрома Сг + их называют рубином. Молекулярная масса монокристаллов сапфира 101,96, твердость по шкале Мооса 9, температура плавления и кипения соответственно 2313 и 3773К. Теплопроводность этих кристаллов по меньшей мере в два раза выше теплопроводности любого другого оксидного материала, за исключением оксидов бериллия и магния.  [c.74]

Как следует из критериев изоморфизма, ионы редкоземельных элементов вследствие их больших размеров не могут быть введены в решетку оксида алюминия. Попытки преодолеть эти затруднения привели к исследованию соединений типа LaMgAlllOlв, характерных, как это следует из диаграмм состояний (см. рис. 39—41), для первой группы редкоземельных элементов (Ба, С1 и Рг). Такие соединения имеют гексагональные решетки, допускают легирование ионами неодима и характеризуются высоким коэффициентом теплопроводности. Технология выращивания кристаллов в настоящее время разрабатывается и в будущем они могут стать конкурентоспособными по сравнению с таким материалом, как гранат.  [c.75]

Кислородная резка — процесс сгорания металла в струе кислорода. Процесс резки начинается с нагрева металла в начальной точке раза до температуры, достаточной для воспламенения в кислороде с помощью подогревающего пламени, затем на нагретое место направляют струю чистого кислорода, который принято называть режущим . Режущий кислород вызывает интенсивное окисление верхних слоев металла, которые, сгорая, выделяют дополнительное количество теплоты и нагревают лежащие ниже слои металла, в результате чего процесс горения металла в кислороде распространяется по всей толщине металла. Образующиеся при сгорании металла оксиды увлекаются струей режущего кислорода и выдуваются ею из зоны реза. Кислородная резка применима лишь для тех металлов, у которых температура воспламенения ниже температуры плавления температура плавления оксидов металла ниже температуры плавления самого металла оксиды жидкотекучи количества теплоты, выделяющейся при сгорании металла в кислороде, достаточно для поддержания непрерывного процесса резки малая теплопроводность. Этим условиям удовлетворяют железо и малоуглеродистые стали. Для резки легированных сталей применяют кислородно-флюсовую резку. Флюс (порошок железа) сгорает в струе кислорода и повышает температуру в зоне реза настолько, что образующиеся тугоплавкие оксиды остаются в жидком состоянии и, будучи разбавлены продуктами сгорания железа, дают жидкотекучие, легкоудаляемые шлаки.  [c.60]


Теплопроводность легированных конструкционных сталей зависит от химического состава, структурного состояния и температуры. В умягченном состоянии (после высокого отпуска) при повышенпи температуры теплопроводность сталей уменьшается. В случае закаленной структуры (после закалки и низкого отпуска или воздушной закалки сталей, практически не имеющих области перлитного превращения, — стали типа 18Х2Н4МА и др.) при повышении температуры, в результате отпуска теплопроводность стали увеличивается.  [c.7]

Теплопроводность полупроводников. Полупроводниковые материалы замечательны тем, что могут обладать высокой решеточной теплопроводностью, если их кристаллы не слишком дефектны и состоят из легких атомов, как это имеет место, например, у кремния и, германия (см. табл. 4.2). Их электронную теплопроводность можно изменять в широких пределах, изменяя концентрацию электронного газа путем легирования. Тем не менее для большинства полупроводников основной вклад в теплопроводность вносит решетка. Так, для германия, обладающего удельным сопротивлением 1 Ом см при комнатной температуре, отношение KaJKyieui 10 - Даже для такого полупроводника, как теллурид висмута (В)2Тез), обладающего очень низким удельным сопротивлением Ю" Ом см, отношение Достигает величины всего лишь порядка 0,2.  [c.142]

Более совершенными твердотельными лазерами являются устройства на алюмоиттриевом гранате, легированном неодимом. Благодаря высокой теплопроводности активной среды такие лазеры могут работать как в импульсном, так и в непрерывном режимах, причем при работе в импульсном режиме частота следования импульсов может изменяться практически в неограниченных пределах. Однако по сравнению с лазерами на рубине и неодимовом стекле при разработке лазеров на алюмоиттриевом гранате достигнут значительно более низкий уровень энергетических параметров излучения. В табл. 4 приведены характеристики некоторых лазеров на алюмоиттриевом гранате.  [c.35]

Из таблицы ояедуег, что литьевой -углеродно-полимерный материал при сравнительно низкой плотности (1,5-1,6 г/см ) имеет достаточно высокую прочность, низкую теплопроводность, высокое удельное электрическое сопротивление, низкую газопроницаемость и термостойкость. Материал о<Зладает высокой стойкостью к воздействию фтористоводородной и соляной кислот, т. е. к тем средам, в которых легированные стали нестойки.  [c.85]

С. По сравнению со слитками, прошедшими копеж, они имеют значительно больший запас тепла. По данным различных авторов, углеродистые и легированные марки стали имеют примерно одинаковую теплопроводность (рис. 4), в связи с чем горячие слитки и заготовки из этих марок стали можно нагревать с практически одинаковой скоростью. При температуре более 550—650° С металл имеет достаточно высокие пластические свойства, и вероятность  [c.47]

Физические свойства хромистых теплоустойчивых сталей на основе -твердого раствора зависят от содержания Сг, N4 и дополнительного легирования удельный вес, теплопроводность и электроп-роводность с повышением содержания Сг уменьшаются, а коэффициент линейного расширения остается примерно постотнным.  [c.216]

Загрузка в печь, имеющую низкую температуру (бо 40° С), и нагрев вместе с печью (фиг. 9, а). Этот вариант даёт малую скорость нагрева и применяется для особо крупных изделий, изготовленных из легированной стали с низким коэфициентом теплопроводности, а также при нагреве изделий в методических или колокольного типа печах при подстужи-вании печи перед загрузкой.  [c.509]

При толщине слоя о Снагрев должен проводиться с большими скоростями и выделением значительной удельной мощности, так как при замедленном нагреве тепловая волна пройдёт в глубь металла и толщина нагретого слоя будет выше заданной. При больших скоростях иагрева и указанном соотношении толщина переходной зоны, как правило, получается меньше 0,5 8. При этом остаточные внутренние напряжения, возникающие после закалки, концентрируются на узкой переходной зоне и могут достигать чрезмерных значений, превышающих предел текучести стали или близких к нему. Особенно резко проявляется данная особенность поверхностного нагрева при обработке изделий из легированных сталей, имеющих малую теплопроводность. Как показала практика, при поверхностной закалке малонагруженных в работе изделий, еыпол-  [c.171]

Применение ферритных легированных сталей в парогенераторах АЭС Хэллэмской и Энрико Ферми объясняется не только соображениями стоимости, но и желанием избежать более высоких требований к деаэрации и очистке воды при использовании аустенит-ных сталей. Важным преимуществом ферритных сталей, в отличие от аустенитных, особенно при использовании в теплообменном оборудовании, является более высокая теплопроводность и меньший коэффициент линейного расширения.  [c.120]

Легированные стали обладают меньшей теплопроводно- TbFO, чем углеродистые. В то же время коэффициент теплового расширения легированных сталей выше. Обе эти причины обусловливают более высокие тепловые напряжения в легированной стали. Положение усугубляется низкой пластичностью многих легированных сталей при высоких температурах. В хрупком материале большие местные напряжения могут привести к образованию трещин.  [c.359]

Стали, легированные кобальтом. Кобальт, в отличие от других элементов быстрорежущей стали, не образует карбидов. Со способствует выделению при отпуске дисперсных частиц интерметаллида большей устойчивостью против коагуляцян, чем карбиды. Это повышает теплостойкость и улучшает теплопроводность [9], но ухудшает прочность и вязкость тем сильнее, чем больше Со и W содержит сталь.  [c.83]

Лучшим материалом для разрезных уплотнительных контактных колец является графит, имеющий превосходную износостойкость, сравнительно низкие коэффициенты трения по большинству металлов и керамике, достаточную пластичность (модуль Юнга равен ЫО — 2-10 кПсм ). Хотя большинство графитов подвержены окислению при температурах выше 300° С, существуют марки графита с превосходной износостойкостью в окислительной среде при температурах до -1-540° С. Понятно, что при проектировании втулок, работающих в тяжелых температурных условиях, применяются легированные стали с высокой теплопроводностью и обращается серьезное внимание на выбор наиболее рациональной геометрии. Замена обычного хромирования, так успешно применяемого при низких температурах, наплавкой карбидом вольфрама или окисью алюминия также дает отличные результаты при работе с пропитанным графитом вплоть до 540° С.  [c.122]

По экспериментальным данным [105], предельная растворимость углерода в поверхностном слое и объеме отливки из сплавов на основе никеля, железа и кобальта составляет (%) 0,55 и 1,85, 2,0 и 2,06, 0,1 и 1,65 соответственно. Растворимость железа, циркония, церия, титана, хрома, магния в поверхностном слое и объеме отливок из алюминия составляет 0,05/0,17, 0,0/8,0, 0,0/9,0, 0,15/0,32, 0,7/5,8, 17/36 соответственно. При этом необходимо учитывать, что при избытке поступающих элементов в поверхностном слое отливки образуются соединения типа Me jj, Ме Н, , NVe Oy, Me Sy и другие твердые фазы, наличие которых резко увеличивает твердость, трещиночувствительность, физическую и химическую неоднородность отливки. По активности образования новых твердых фаз в поверхностном слое первое место занимают отливки из титана и его сплавов, второе — отливки из чугуна, третье — из легированных сталей. Кроме того, если к отливкам предъявляются высокие требования по теплоотдаче в условиях эксплуатации, то при выборе металла для отливок с развитой поверхностью учитывают его теплопроводность.  [c.12]


Более высокий температурный порог рекристаллизации имеют стали, сохраняющие аустенитную структуру при охлаждении до комнатной температуры. Поэтому ползучесть в сталях аустенит-ного класса проявляется при более высоких температурах и скорость ее при той же температуре меньше, чем у сталей иных структур. Стали аустенитного класса более подходят для работы с большими напряжениями при высоких температурах. Однако сохранение устойчивой аустенитной структуры при комнатной температуре возможно только при сильном легировании стали, главным образом никелем и хромом. Такие стали значительно дороже среднелегированных или легированных более дешевыми компонентами. Кроме того, при аустенитной структуре металла значительно изменяются его физические свойства, что может вызвать ухудшение работы некоторых деталей. Особенно сильно влияют на конструкцию элементов турбины резкое уменьшение теплопроводности и возрастание коэффициента линейного расширения.  [c.136]

Легирован инднем, nfiH 295 К O " 1,2 Ом - см. При дозах облучения 1,3 10 2,6. 10 6,5 10 н 1,7 10 электронов на 1 см различия в теплопроводности для германия р-типа меиее 15%.  [c.158]


Смотреть страницы где упоминается термин Легированные Теплопроводность : [c.32]    [c.61]    [c.198]    [c.6]    [c.460]    [c.82]    [c.53]    [c.204]    [c.206]   
Машиностроительное стали Издание 3 (1981) -- [ c.112 ]



ПОИСК



Коэффициент теплопроводности монокристаллических образцов антимонида кадмия, легированных серебром и золотом

Теплоемкость, коэффициенты теплопроводности и линейного расширения легированных конструкционных хромистых сталей

Теплоемкость, коэффициенты теплопроводности и линейного расширения тугоплавких и легирующих элементов и сплавов на их основе

легированные легированные конструкционные— Критические точки 23 — Механические свойства 18—22 — Температурный коэффициент линейного расширения 23 — Теплопроводность 23 — Химический соста



© 2025 Mash-xxl.info Реклама на сайте