Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические системы линейные числом степеней свободы

В настоящем параграфе проведен аналогичный анализ поведения собственных чисел линейных симплектических преобразований фазового пространства любого числа измерений. Результаты этого анализа (принадлежащего М. Г. Крейну) применяются при исследовании условий возникновения параметрического резонанса в механических системах со многими степенями свободы.  [c.197]


Механизмы, подверженные колебаниям, можно моделировать механической системой с конечным числом степеней свободы, движение которой описывается уравнениями Лагранжа второго рода. Предположение о малости колебаний приводит к линейным динамическим системам с постоянными коэффициентами. Эти уравнения интегрируются в общем )зиде, что позволяет полностью исследовать явления, которые они описывают.  [c.200]

Все эти задачи, как и многие другие частично решенные или только поставленные перед прикладной механикой другими дисциплинами, требуют решения новых вопросов, не имевших, как казалось, ни большого теоретического, ни практического интереса. К таким вопросам относятся и чисто механические, как, например, теория механизмов с очень большим числом степеней свободы изучение незамкнутых кинематических цепей изучение новых видов связей в механических системах, состоящих из машины и человека уточнение и улучшение методов измерения сил, линейных и угловых перемещений и их первых, вторых и третьих производных по времени.  [c.25]

Для рассмотрения связанных колебаний пространственно-многомерных механических цепей наиболее удобны общие методы исследования линейных систем с конечным числом степеней свободы (см. том 1, часть I). Однако при исследовании довольно распространенных пространственно-одномерных механических цепей для инженерных целей более удобными оказываются методы, в которых уравнения движения системы находят непосредственно из топологии рассматриваемой механической цепи на основе законов Кирхгофа. Ниже при рассмотрении пространственно-одномерных цепей двухполюсников введены воспринимаемые силы, параметры двухполюсников и их ассоциированные направления, выбираемые одинако-  [c.42]

Уравиеиия свободных колебаний. В большинстве практических случаев колебания исследуемой реальной механической системы близки к колебаниям некоторой идеализированной линейной системы с эквивалентным вязким трением. Исключение представляют специальные случаи, когда реальная конструкция содержит элементы с резко выраженными нелинейными свойствами. Их следует рассматривать отдельно. Целесообразен подход к реальной распределенной конструкции как к идеализированной системе, с конечным числом степеней свободы, имеющей определенные собственные характеристики, которыми с достаточной точностью определяют колебания исследуемой конструкции, поскольку практически исследуют ограниченное число собственных тонов. Таким образом, если принять характер демпфирования вязким (силы трения пропорциональны скорости), то предметом рассмотрения является линейная система с п степенями свободы, дифференциальное уравнение движения которой можно представить в следующем виде  [c.330]


Том первый посвящен колебаниям линейных систем. Здесь формулируются и рассматриваются методы изучения колебательных процессов механических систем с конечным числом степеней свободы, а также систем с распределенными параметрами. Рассмотрены консервативные и неконсервативные системы, анализируются вопросы устойчивости решений.  [c.11]

Предварительные замечания. Под упругими распределенными системами понимают упругие механические системы с непрерывно распределенными массой и жесткостью. Они имеют бесконечное число степеней свободы. В отличие от систем с сосредоточенными параметрами (с конечным числом степеней свободы п), динамическое поведение которых можно описать системой обыкновенных дифференциальных уравнений относительно обобщенных координат i/y (I) (/ = 1, 2,. .., а) (см. часть первую), поведение распределенных систем описывают дифференциальными уравнениями в частных производных относительно некоторых функций координат и времени. Распределенные упругие системы называют линейными, если они описываются линейными уравнениями в частных производных. При решении задач динамики для распределенных упругих систем, кроме начальных условий, требуется формулировка краевых условий.  [c.135]

При исследовании движения механических систем методом канонических уравнений Гамильтона полезно придерживаться следующего порядка вычислений. Как и в методе уравнений Лагранжа 2-го рода, прежде всего устанавливаем число степеней свободы рассматриваемой механической системы точек. Затем выбираем независимые обобщенные координаты и составляем выражения для кинетической и потенциальной энергии в функции обобщенных координат и обобщенных скоростей. Составив функцию L = T+U T—V, по формулам (62) находим обобщенные импульсы pi, р2,. .Ps. Разрешая полученную систему линейных уравнений относительно обобщенных скоростей, мы можем по формуле (64) найти И в функции канонических переменных qu 2,. , qs, pu р2,. .., Ps H времени t Зная функцию H = H qu Ръ Ps, 0. можно написать канонические уравнения (67) и затем интегрировать полученную систему уравнений.  [c.515]

Стержневая система является примером механической системы, которую можно представить в виде связанного набора фиксированных элементов с конечным числом степеней свободы. Это позволяет непосредственно применить для ее расчета процедуру метода конечных элементов. Кроме того, стержневой системой удобно пользоваться как простой моделью при рассмотрении систем более сложных элементов. Данная книга посвящена в основном расчету линейно-деформируемых и упругих стержневых систем на основе процедуры метода конечных элементов.  [c.3]

В этом параграфе будут исследованы однодвигательпые машины, Л1еханические части которых обладают одной степенью подвижности. При этом обобщенная координата является единственной входной координатой механической части машины, а число степеней свободы зависит от учета податливостей тех или иных звеньев механизмов. Пусть выбранная динамическая модель механической части является линейной цепной системой с п + 1 степенями свободы ее обобщенные координаты обозначим через до, gi,. .., дп.  [c.127]

Динамические явления в роторных системах носят, как правило, линейный характер, чго проявляется, в частности, в пропорциональности амплитуд колебаний с частотой вращения ротора величине его неуравновешенности. В тех случаях, когда проявляются нелинейные эффекты, они имеют в основном тот же характер, что и для большинства механических систем (искажение формы амплитудной кривой, затягивание и срью колебаний при разгоне и выбеге, субгармонические режимы) [30, 41, 51, 84]. Вместе с тем роторные системы имеют и некоторые особенности, обусловленные вращением ротора и увеличением вследствие этого вдвое числа степеней свободы по сравнению с аналогичными стержневыми системами. Ниже рассмотрены особенности вынужденных нелинейных колебаний роторов в случаях, когда вся  [c.373]


В качестве введения в раздел нестационарных случайных колебаний линейных систем рассмотрим систему с тремя степенями свободы (рис. 6.11, а), где массы тjсчитаем точечными. На рис. 6.11, а число внешних сил равно числу степеней свободы, но возможны случаи, когда число возмущений меньше числа степеней свободы или больше, как показано на рис. 6.11, б, когда возмущения приложены в безмассовые точки. Возможны и механические системы (системы амортизации), когда элементы, реализующие сосредоточенные силы вязкого трения (схуУу), связаны с безмассовыми точками (рис. 6.11, б).  [c.259]

Для рассмотрения связанных колебаний пространственно-много-мерных механических цепей наиболее удобны общие методы исследования линейных систем с конечным числом степеней свободы [64, 79]. Однако при исследовании довольно распространенных пространственноодномерных механических цепей для инженерных целей более удобными оказываются методы, в которых уравнения движения системы находят непосредственно из топологии рассматриваемой механической цепи на основе законов Кирхгофа. Ниже при рассмотрении простран-ственно-одномерных цепей двухполюсников введены воспринимаемые силы, параметры двухполюсников и их ассоциированные направления, выбираемые одинаковыми для всех элементов относительно принятой системы отсчета. Это позволяет применить для описания и анализа указанных цепей аппарат теории графов и дать систематический и формализованный подход к исследованию механических цепей.  [c.31]

Механическая система называется системой с коненным числом степеней свободы, если можно ввести такое конечномерное линейное (векторное) пространство и такое множество точек М в нем, что между всеми возможными положениями механической системы и всеми точками множества М С Я имеется взаимно-однозначное соответствие.  [c.106]

В статье рассматриваются стопорные режимы в машинном агрегате с электроприводом постоянного тока. Механическая система схематизирована в виде дискретной цепной крутильной системы с конечным числом степеней свободы. Рассмотрены уточненное и упрощенное математические описания упруго-диссипативных свойств соединений. Динамические процессы в приводном двигателе с независимым возбуждением исследованы с учетом типовых САР скорости. При этом рассмотрены наиболее характерные примеры САР с линейными и нелинейными (задержанными) связями. На основе рассмотрения динамических процессов в механической системе и в проводном двигателе получена система дифференциальных уравнений движения с кусочно-постоянными коэффициентами при уточненном математическом описании динамических харак-геристик звеньев. Предложен эффективный численно-аналитический метод интегрирования системы уравнений движения. Рассмотрены возможные упрощения при приближенном исследовании стопорных режимов Получена система приближенных интегральнодифференциальных уравнений стопорного режима, для которой разработан метод отыскания решения в аналитическом виде. Изложенное иллюстрировано общим примером. Библ. Ill назв. Илл. 9.  [c.400]

Самые разнообразные системы с одной степенью свободы (механические, электрические, тепловые, акустические, химические и др.) могут быть с точки зрения их динамических свойств с достаточною полнотой представлены небольшим числом условных линейных и нелинейных элементарных динамических систем, классифицируемых (т. е, различаемых друг от друга) по их уравнениям движения. Последние представляют различные частные случаи обыкновенного дифференциального уравнения второго порядка. Таким образом, реальную САР можно представить в виде замкнутого контура, составленного из конечного числа линейных или нелинейных типовых звеньев с о д и о й степенью свободы и звеньев чистого запаздывания . Такое условное изобра -ке-Hile САР носит название ее структурной схемы.  [c.515]


Смотреть страницы где упоминается термин Механические системы линейные числом степеней свободы : [c.336]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.531 , c.532 , c.537 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.531 , c.532 , c.537 ]



ПОИСК



ЛИНЕЙНЫЕ СИСТЕМЫ С КОНЕЧНЫМ ЧИСЛОМ СТЕПЕНЕЙ СВОБОДЫ НЕКОТОРЫЕ СВЕДЕНИЯ ИЗ АНАЛИТИЧЕСКОЙ МЕХАНИКИ Связи механической системы

Линейные системы с is степени свободы

Механические ЧИСЛО степеней свободы

Механические системы линейные

Механические системы механических систем

Система линейная

Система механическая

Степени свободы системы

Степень свободы

Степень свободы (число степеней)

Число степеней свободы

Число степеней свободы механической системы

Число степеней свободы системы

Число степенен свободы

Число степенной свободы



© 2025 Mash-xxl.info Реклама на сайте