Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теории прочности основанные на сопротивлении

Количественная оценка сопротивления сварных соединений образованию холодных трещин основана на теории замедленного разрушения и предусматривает механические испытания сварных образцов. Испытания эти подобий испытаниям на длительную прочность. Наибольшее применение получил метод МВТУ на машине ЛТП. Метод основан на механическом испытании сварных образцов рекомендуемых размеров путем нагружения постоянными нагрузками. Нагрузки моделируют упругую энергию собственных напряжений в сварных конструкциях. За показатель сопротивляемости металла образованию холодных трещин при сварке следует принимать минимальное растягивающее напряжение от внешней нагрузки, при котором в сварном соединении образца образуются трещины после выдержки образца под нагрузкой в течение 20 ч.  [c.49]


Вертикальная консольно защемленная труба (см. рисунок) подвергается действию горизонтальной силы Р, приложенной на расстоянии а от оси трубы. Определить на основании третьей теории прочности эквивалентные напряжения в стенках трубы. В расчетах принять Р = 1 кН, а = 1м, / = 7,5м момент сопротивления изгибу W = 150 см .  [c.342]

Прикладная механика также состоит из трех крупных разделов теории механизмов и машин, сопротивления материалов, деталей маишн. В Теории механизмов и машин на основании законов теоретической механики рассматриваются принципы анализа и проектирования механизмов. Сопротивление материалов позволяет установить условия прочности и устойчивости проектируемых конструкций и сооружений. Детали машин посвящены изучению принципов расчета и конструирования элементов и узлов машин общего назначения.  [c.5]

Для точного измерения малых деформаций можно применять зеркальный тензометр и тензодатчики. При этом определяют модуль сдвига и касательные пределы текучести, упругости и пропорциональности. Так же, как и при изгибе, следует различать два условных предела текучести при кручении реальный, основанный на вычислении истинных напряжений, и номинальный с вычислением напряжений по обычным формулам сопротивления материалов [19]. В обоих случаях допуск (исходя из удлинения 0,2% при растяжении) следует выбирать по 1П теории прочности g = 1,5е = 0,3%. Так же, как и при изгибе, номинальный предел текучести выше, чем реальный, вследствие появления остаточных напряжений обратного знака. Как показала С. И. Ратнер, превышение номинального предела над реальным для разных материалов составляет 20—30%.  [c.49]

Необходимый момент сопротивления сечения вала по формуле (175), основанной на четвертой теории прочности.  [c.264]

Подробные исследования предельных состояний деформации и прочности чистых металлов, основанные на испытаниях монокристаллов, убедительно показывают, что дефекты различных размеров и различного характера имеются во всем объеме кристаллов металла. В соответствии с их размерами и характером эти дефекты оказывают неодинаковое влияние на развитие пластических деформаций и разрушений путем отрыва. Без знания роли этих дефектов невозможно понимание природы основных механических свойств технических металлов. Ввиду этого необходимо постепенно разрабатывать новую теорию деформации и прочности металла, в которой теория макродеформаций будет основана на концепции среды, состоящей из движущих дислокаций и проникнутой сетью стойких точечных дефектов и границ с повышенным сопротивлением деформации.  [c.139]


При разработке конструкции узла трения и оценке совместимости материалов его элементов следует четко представлять условия эксплуатации (плавное нагружение, ударное нагружение, воздействие динамических нагрузок), которые существенно влияют на сопротивление усталости материалов. Например, на основании структурно-энергетической теории надежности удается объяснить наблюдаемое на практике снижение сопротивления усталости стали при увеличении ее предела прочности свыше 800 МПа [20]. Оказалось, что причиной снижения выносливости высокопрочных сталей является соответствующее снижение критической скорости деформации (удара), достаточной для разрушения материала при однократном нагружении на конкретном масштабном уровне.  [c.489]

Первое направление (сейчас в значительной мере устаревшее) заключается в предварительном выборе запаса прочности, установлении расчетных напряжений на основании этого запаса и определении сечений и моментов инерции деталей по формулам сопротивления материалов и теории упругости с учетом главных нагрузок на расчетном режиме (обычно режим максимальной мощности или числа оборотов).  [c.160]

Факультативные занятия в основном лекционного характера могут быть организованы как в процессе изучения сопротивления материалов, так и на старщих курсах техникума. Занятия, проводимые параллельно с изучением основного курса сопротивления материалов, могут быть рассчитаны на 15—20 часов. Тематика этих занятий может быть либо направлена на расширение кругозора учащихся, повышение уровня их развития, углубление знаний по общему курсу сопротивления материалов, либо быть евязана со специальным и предметами. В машиностроительных техникумах, как правило, в курсах специальных предметов рассматривают ряд вопросов расчета на прочность, но обычно, если эти расчеты не опираются на известные сведения из сопротивления материалов, их преподносят рецептурно. Так, например, при изучении расчетов химических и пищевых мащин и аппаратов дают формулы, основанные на теории расчета толстостенных сосудов (формула Ламе), не пытаясь обосновать эти зависимо-  [c.43]

Развитие теории еопротивления уеталоети в наетоящее время идет в оеновном по пути накопления и еистематиза-ции экспериментальных данных, на основании которых и проводится расчет на прочность при переменных напряжениях. Усталостные испытания связаны с использованием сложных машин и образцов, а получение одной экспериментальной зависимости часто требует месяцы, а иногда и годы. Хотя в течение многих десятилетий ведется все время прогрессивно развивающаяся экспериментальная и теоретическая работа по исследованию усталости, в настоящее время, на основании имеющихся опытных данных, мы может рассчитывать на сопротивление усталости сравнительно узкий круг, правда, часто встречающихся, деталей систем (валы, вращающиеся оси, зубчатые колеса, некоторые паяные и резьбовые соединения и ряд других). Для вновь создаваемых узлов и систем с целью выяснения их сопротивления усталости приходится прибегать к натурным усталостным испытаниям.  [c.332]

При теоретическом исследовании поведения материалов под нагрузкой исходят из ряда допущений и гипотез, существенно упрощающих и схематизирующих действительные явления. Подученные таким путем теоретические выводы, как правило, требуют экспериментальной проверки. Поэтому метод сопротивления материалов, подобно методу любой прикладной физико-технической науки, основан на сочетании теории с экспериментом. Экспериментальная часть при изучении сопротивления материалов имеет значение не менее важное, чем теоретическая. Без данных, полученных в результате эксперимента, задача расчета на прочность, жесткость и устойчивость конструкций или их отдельных элементов не может быть решена, так как ряд величин, характеризующих упругие свойства материалов (модуль продольной упругости Е, модуль сдвига О, коэффициент Пуассона р, и др.), определяются чисто опытным путем. Ввиду этого изучение сопротивления материалов требует не только усвоения теоретических основ этого курса, но и овладения методикой постановки и проведения лабораторных экопериментов, а также знакомства с испытательными машинами, установками и приборами.  [c.5]


Но принципиальной разницы между случайными и детерминированными величинами нет. В том же примере, если учесть возможность действия других сил (сил сопротивления воздуха, сил трения), неизбежные неточности в определении массы тела и дру гне факторы, то ускорение тела также можно признать величиной случайной. Отнесение физической величины к случайным или детерминированныл) зависит от задач исследований, требуемой точности, возможности учета второстепенных факторов и других обстоятельств и определяется соображениями цр.чрг.ообраэйустп. Ка оскоьаши практического опыта оказалось возможным выявить общие закономерности, свойственные случайным величинам при массовом их повторении. Основанные на этих закономерностях методы теории вероятности и математической статистики находят все возрастающее приложение при оценке прочности и надежности конструкций.  [c.590]

В конце XIX века устрашающие предсказания Баха, Мемке и других по поводу продолжавшегося использования линейной теории упругости в технике не смогли остановить тех, кто принимал участие в фантастическом росте огромного промышленного комплекса XX века, от использования линейного приближения в инженерных расчетах, соответствовавших малым деформациям. С точки зрения экспериментальной физики сплошной среды, однако, точно так же как и с позиций усилий по согласованию микроскопических и макроскопических концепций в терминах атомной физики, а, возможно, также и с точки зрения техники XXI века сохранение нелинейности вплоть до нулевого напряжения имеет немаловажное значение. Баху принадлежит, по-видимому, единственное изложение сопротивления материалов для инженеров, основанное на нелинейной зависимости между напряжением и деформацией. Его Упругость и прочность (Ba h [1902,1]), выдержавшая шесть изданий между 1889 и 19J1 гг., содержала большой раздел, основанный на его степенном законе ).  [c.164]

Легко себе представить тот толчок, который был дан дальнейшему развитию науки о прочности материалов мемуарами Сен-Венана, содержавшими строгие решения для ряда практически важных случаев кручения и изгиба. С их появлением возникло стремление вводить в инженерные руководства по сопротивлению материалов основные уравнения теории упругости. Сам Сен-Венан в многочисленных примечаниях к своему изданию книги Навье действовал в том же направлении. Рэнкин уделяет теории упругости большое место в своем руководстве по прикладной механике. Грасхоф и Винклер, оба, пытались вывести формулы сопротивления материалов, не пользуясь гипотезой плоских сечений, а основывая свои выводы на уравнениях точной теории. Впоследствии такой метод изложения сопротивления материалов вышел из употребления ), и ныне принято вести преподавание этой науки на более элементарном уровне. Углубленная же постановка курса преподавания, основанная на теории упругости, сохраняется в настоящее время, как общее правило, лишь для инженеров, специализирующихся в этой области.  [c.288]

Только в 1773 г. Кулон ( oulomb) в своем знаменитом труде, заложившем почти все основы теории прочности сооружений ), исправил эту ошибку в вычислении. Помещая подобно Мариотту и Бернулли линию неизменяемых волокон посредине высоты сечения, полагаемого прямоугольным, он установил на основании очевидной леммы статики принцип, который должен служить для определения этой линии в случае сечений любой формы, а именно равенство нулю полной алгебраической суммы продольных сопротивлений волокон  [c.382]

Теория упругости сформировалась, как один из важных разделов математической физики в первой половине XIX века. До этого времени трудами ученых XVII и XVIII веков — Галилея, Мариотта, Гука, Бернулли, Эйлера, Кулона и других—была довольно детально разработана тбория изгиба тонких упругих стержней. В начале XIX века Лагранжам и Софи Жермен было дано решение задачи об изгибе и колебаниях тонких упругих пластинок. Некоторые особенности таких тонких упругих тел позволили значительно упростить постановку и самое решение задач о деформировани под действием внешних сил, не вникая особенно глубоко в существо явлений, происходящих в материале. Начало XIX века ознаменовалось огромными успехами математического анализа, обусловленными отчасти множеством важных задач, возникших в физике, потребовавших применения сложного математического аппарата и дальнейшего развития его это и послужило основой для возникновения особого направления в физике, названного математической физикой. Среди множества проблем, вставших перед этой молодой дисциплиной, необходимо отметить потребность в глубоком исследовании свойств упругих материалов и в построении математической теории, позволяющей возможно полно изучать внутренние силы, возникающие в упругом теле под действием внешних сил, а также деформацию тела, т. е. изменение формы его. Этого рода исследования оказались крайне необходимыми также для удовлетворения запросов быстро развивавшейся техники в связи со строительством железных дорог и. машиностроением запросы эти вызывались необходимостью создать теоретические методы расчета частей сооружений и машин на прочность. Уже в 1825 г. крупный французский инженер и ученый Навье выпустил, Курс лекций по сопротивлению материалов , основанный на имевшихся к тому времени экспериментальных данных и приближенных теориях, указанных нами выше. В России аналогичный курс  [c.9]

В литературе предлагались различные критерии предельного состояния, т. е. различные соотношения между инвариантами, позволяющие установить опасность любого напряженного состояния по ограниченному числу простейших механических испытаний материала. Широко известны классические теории прочности (пластичности), рассматривающие изотропные материалы с одинаковыми пределами прочности на растяжение и сжатие (теории наибольших нормальных напряжений, удлинений, касательных напряжений, теория энергии формоизменения), а также различные варианты новейших энергетических теорий (критерии Ю. И. Ягна, П. П. Баландина, К. В. Захарова и др.), основанные на гипотезе А. Надаи о наличии функциональной связи между октаэдрическими касательными и нормальными напряжениями и описывающие условия перехода в предельные состояния как изотропных, так и анизотропных материалов с различным сопротивлением растяжению и сжатию. Подробное рассмотрение этих теорий содержится в монографиях [34, 39, 106, 130, 1311 и останавливаться на них здесь нет необходимости. Рассмотрим наиболее интересные достижения последних лет, уделив особое внимание критериям прочности (пластичности) для изотропных и слабоанизотропных материалов, к каковым относятся стеклообразные и кристаллические полимеры.  [c.206]


Впервые такое условие было, получено на основании эксперимен- и тальнож исследования истечения металл через отверстия, проведенного французским инженером у 1 реска в 1868 г. В этих испытаниях было установлено, что в состоянии текучести наибольшее касательное напряжение во всех точках среды постоянно и равно пределу текучести материала при чистом сдвиге. Сен-Венан дал математическую формулировку этого условия для плоской задачи. Условие (3.15) называют условием начала пластичности наибольшего касательного напряжения или условием пластичности Треска — Сен-Венана. В курсе сопротивления материалов оно известно как теория прочности наибольших касательных напряжений.  [c.41]

Цвикки выдвинул два возражения против гипотезы, по которой снижение механической молекулярной прочности, вычисленной согласно теории атомной решетки, до действительно наблюдаемых низких технических значений ) обусловлено именно мельчайшими трещинами. На основании этого предположения следовало бы ожидать, что поведение реальных кристаллов должно приближаться к поведению кристаллов идеальных по мере устранения случайных дефектов во время роста кристаллов. Наблюдения, однако, показывают, что справедливо обратное. Второе возражение заключается в том, что если бы понижение сопротивления вызывалось беспорядочно распределенными микроскопическими трещинами, то характеристики свойств, наблюдаемые в действительных испытаниях, распределялись бы по законам теории вероятностей, тогда как на самом деле они варьируют в сравнительно узких пределах.  [c.79]

С начала XX века роль русских учёных в сопротивлении материалов стала ведущей. Проф. И. Г. Бубнов явился основоположником современной науки о прочности корабля. Академик А. И. Крылов, помимо дальнейшего развития задач о расчете корабля, известен крупнейшими исследованиями в области динамических расчётов. Проф. Н. П. Пузыревский создал новую методику расчёта балок на упругом основании. Из многочисленных трудов академика Б. Г. Галёркина достаточно упомянуть работы по развитию вариационных методов механики, общему решению пространственной задачи теории упругости и расчёту плит. Многих вопросов расчёта на прочность касались и работы С. П. Тимошенко.  [c.17]


Смотреть страницы где упоминается термин Теории прочности основанные на сопротивлении : [c.162]    [c.393]    [c.345]    [c.459]    [c.11]   
Сопротивление материалов Издание 13 (1962) -- [ c.0 ]



ПОИСК



Теории прочности



© 2025 Mash-xxl.info Реклама на сайте