Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм с внутренним коническим зацеплением

Рис. 82. Схемы планетарных зубчатых механизмов а) — с внешним и внутренним зацеплениями н одним сателлитом б) с двумя внешними зацеплениями а) с внешним и внутренним зацеплениями а) с двумя коническими зацеплениями. Рис. 82. Схемы <a href="/info/52099">планетарных зубчатых механизмов</a> а) — с внешним и <a href="/info/7865">внутренним зацеплениями</a> н одним сателлитом б) с двумя <a href="/info/7616">внешними зацеплениями</a> а) с внешним и <a href="/info/7865">внутренним зацеплениями</a> а) с двумя коническими зацеплениями.

Пример 82. На рис. 233 показан механизм с паразитным коническим колесом. От ведущего вала I вращение передается валу III через посредство колес Л и В, из которых второе сцепляется внутренним зацеплением с коническим колесом С, закрепленным на валу III. Валы I и III соосны.  [c.250]

На низшей передаче центральное зубчатое колесо блокируется с картером моста, благодаря чему зубчатое колесо (коронное) планетарного механизма с внутренним зацеплением, составляющее одно целое с ведомым коническим колесом, вращает через сателлиты корпус планетарного механизма, соответственно уменьшая частоту вращения. Переключение передач осуществляется перемещением центрального зубчатого колеса в осевом направлении до сцепления с кулачками корпуса планетарного механизма для включения повышающей передачи или с кулачками опоры чашки дифференциала — для включения понижающей передачи. Передаточное число планетарного механизма двухступенчатой передачи равно 1,391.  [c.251]

Механизм предназначен для определения вектора ОА по его проекциям (ОА) , ОА)у и (ОА) на оси бх, Оу и Oz. Проекция (ОА)х вводится валиком 14 через промежуточный валик 13, на котором Насажено коническое колесо 4, входящее в зацепление с равным коническим колесом 4. Колесо 4 жестко посажено на валик 12, на котором закреплены колеса 6 и 15, входящие в зацепление с коническими колесами 6 и 15, закрепленными на валиках 11 и 11. Валики 11 и IV входят в винтовые пары со звеном 5. При перемещении валика 14 звено 5 перемещается параллельно оси Ох, тем самым задается проекция (ОЛ) . Аналогично при вращении валика 10 через промежуточные валики 9, 8 конические колеса 17, 17, 18, 18, 19, 19 и винтовые пары, в которые входят Звено 1, оно перемещается параллельно оси Оу. В прорезях а п Ь звеньев 5 и 1 скользит ползун 16. Проекция (ОЛ)г задается Посредством вращения зубчатого колеса 2, входящего в зацепление с зубчатой рейкой 3, с которой связано целиком устройство, задающее проекции (ОА) и ОА)у. Для возможности перемещения конических колес 4 и 19 вдоль оси Ог предусмотрена возможность поступательного движения валиков 13 я 9 во внутренних плоскостях валиков 14 и 10. Результирующий вектор определяется величиной и направлением отрезка О А, где А — точка, выбранная на ползуне 16.  [c.181]

Рис. 19. Реверсивные механизмы с передвижной шестерней (о), фрикционной муфтой (б), коническими колесами (в—г), зубчатыми колесами наружного и внутреннего зацепления (д) и составным колесом (е) Рис. 19. <a href="/info/186941">Реверсивные механизмы</a> с передвижной шестерней (о), <a href="/info/2339">фрикционной муфтой</a> (б), <a href="/info/1000">коническими колесами</a> (в—г), <a href="/info/999">зубчатыми колесами</a> наружного и <a href="/info/7865">внутреннего зацепления</a> (д) и составным колесом (е)

Червяк 31 приводит в движение червячное колесо 30, соединенное с барабаном лебедки, и связан с тормозом 32 механизма подъема стрелы. При зацеплении шестерни 28 с валом-полумуфтой 27 движение передается механизму поворота крана, при этом вал 29 не вращается. Механизм поворота состоит из редуктора поворота и открытой зубчатой передачи. Червяк 15 редуктора поворота соединен с валом 27 шлицевой муфтой. От червяка 15 движение передается червячному колесу 13, соединенному с вертикальным валом через коническую фрикционную предохранительную муфту 12. На горизонтальном валу жестко закреплена шестерня 16, находящаяся в постоянном зацеплении с зубчатым колесом 17 неподвижной внутренней обоймы опорно-поворотного устройства. При вращении вала шестерня 16 обкатывается по колесу 17 и тем самым приводит во вращение поворотную часть крана. С червяком 15 связан ленточный тормоз 14 механизма поворота. Включение механизмов подъема стрелы, крюка и механизма поворота, а также их реверсирование производятся рычагами из кабины машиниста. Включение редуктора отбора мощности осуществляется рычагом, расположенным в кабине автомобиля.  [c.66]

В 1937 г. была опубликована работа Н. И. Колчина и В. В. Болдырева, посвященная исследованию конических зацеплений. Несколько позже вышла монография X. Ф. Кетова об эвольвентных зацеплениях. В конце тридцатых годов ленинградские машиноведы под общим руководством X. Ф. Кетова и Н. И. Колчина начали исследования в области синтеза зубчатых механизмов. В. В. Добровольский посвятил ряд работ вопросам подбора шестерен для планетарных редукторов, подрезу зубцов, теории внутреннего зацепления зубчатых колес, вопросам определения коэффициента полезного действия планетарных и дифференциальных передач (1936—1939). С. Н. Кожевниковым написана обобщающая работа по эпициклическим передачам (1939).  [c.373]

Поворот стола происходит от электродвигателя с = Н40 об/мин через клиноременную передачу с диаметрами шкивов d = 75 и 155 мм, двухзаходный червяк и червячное колесо z = 35 и далее через зубчатые колеса г = 13 и 188 с внутренним зацеплением. Нарезание резьбы резцом, установленным в шпинделе, осуществляется от вала / V через зубчатые колеса а а Ь, с и d, конические зубчатые колеса г = 18 и 36, четырехзаходный червяк и червячное колесо Z = 29, затем зубчатые колеса z = 35 и 37, 21 и 48, 40 и 35, ходовой випт с шагом / — 20 л<л1 и полугайку, при этом происходит осевое перемещение шпинделя. С помощью рукояток осуществляется ручное перемещение отдельных механизмов. С помощью рукоятки 1 происходит установочное перемещение радиального суппорта через конические зубчатые колеса z = 26 и 41, далее зубчатые колеса г = 28 и 64, затем по цепи подач суппорта. Но для того чтобы рабочий имел представление, на какую величину переместился суппорт, служит лимб, связанный с цепью подач через зубчатые колеса г = 38 и 35, двухзаходный червяк и червячное колесо z = 35. Рукоятка 2 предназначена для быстрого ручного перемещения шпинделя, при этом необходимо, чтобы зубчатое колесо z = 35 было выключено из цепи, а выдвижная шпонка в коническом зубчатом колесе z — 51 была бы включена. Следовательно, при вращении рукоятки 2 приводятся во вращение зубчатые колеса z = 60 и 68, конические зубчатые колеса Z = 51 и 38, зубчатые колеса z = 35 и 27 и далее движение идет по цепи подач. На данном валу посажены два зубчатых колеса г = 35, одно из них связано с зубчатым колесом z = 24, четырехзаходный червяк и червячное колесо z = 60. Их движение приводит во вращение лимб, с помощью которого определяют величину перемещения шпинделя. С помощью рукоятки 3 производят вертикально ручное перемещение шпиндельной бабки и опорного люнета. Рукоятка 4 предназначена для продольного перемещения стола, а рукоятка 5 — для поперечного перемещения. С помощью рукоятки 6 осуществляется поворот стола вручную. Ручное перемещение задней стойки осуществляется вручную вращением рукоятки 7 через конические зубчатые колеса z = 13 и 26, реечное зубчатое колесо г = 11 и рейку. Для обеспечения соосности опорного люнета относительно оси шпинделя служит рукоятка 8.  [c.170]


Мальтийские механизмы обладают хорошими динамическими свойствами, что и предопределило их распространение в приводе поворотных устройств, применяемых в автоматических станках и станочных линиях. Находят применение плоские мальтийские механизмы с внешним (рис. 234, а) и внутренним зацеплением, а также сферические мальтийские механизмы (рис. 234, б) в тех случаях, когда при их применении удается избежать дополнительной конической зубчатой передачи.  [c.272]

Из соотношения чисел зубьев цилиндрических и конической передач видно, что диск б сделает полный оборот за три оборота маховика 14. Указатель 12 к.меет внутренние зубья, с которыми зацепляется шестерня 15, закрепленная на валу 16. Передаточное отношение передачи с внутренним зацеплением также 1 3, следовательно, одному обороту диска 6 соответствует один оборот указателя 12, на передней стенке которого нанесены цифры величин продольных подач. Стрелка 3 указывает величину продольной подачи для данного положения механизма.  [c.136]

Наибольшее распространение получили простые планетарные механизмы самых различных кинематических схем. Самые распространенные и самые простые из них показаны на рис. 83 и рис. 84. Их условные обозначения слагаются из видов зацеплений (А — внешнее, I — внутреннее, К — коническое). Обозначение планетарных механизмов с коническими зубчатыми колесами основывается на следующей аналогии если угол конусности (1 уменьшать до нуля, то получим зацепление цилиндрических колес  [c.146]

Планетарные механизмы могут выполняться как с цилиндрическими колесами внешнего и внутреннего зацепления (рис. 3.79, а, б), так и с коническими колесами внешнего зацепления (рис. 3.79, в).  [c.465]

Простые эпициклические механизмы могут быть образованы сочетанием цилиндрических зубчатых колес с внешним и внутренним зацеплением, конических зубчатых колес, эллиптических колес, винтовых колес, червячных зацеплении, а также из фрикционных передач..  [c.188]

Рис. 9.43. Планетарный механизм быстрого возвратно-поступательного движения. Коническое колесо 2 с 46 зубьями, установленное жестко на ведущем валу зацепляется с коническим колесом 3 внутреннего зацепления с 48 зубьями. Рис. 9.43. <a href="/info/1930">Планетарный механизм</a> быстрого <a href="/info/284605">возвратно-поступательного движения</a>. <a href="/info/1000">Коническое колесо</a> 2 с 46 зубьями, установленное жестко на ведущем валу зацепляется с <a href="/info/1000">коническим колесом</a> 3 <a href="/info/7865">внутреннего зацепления</a> с 48 зубьями.
Включены отсутствовавшие в первом издании некоторые специальные вопросы геометрии зубчатых передач расчет передач с арочными зубьями, эвольвентно-коническими колесами, несимметричными зубьями, увеличенными коэффициентами перекрытия, расчет передач планетарных многопоточных механизмов и передач внутреннего зацепления с малой разностью чисел зубьев. Значительно подробнее рассмотрена геометрия переходных кривых и модифицированных профилей.  [c.6]

Схема картофелекопателя с коническими колесами изображена на рис. 2.36. Захваты в виде вилок Л и В жестко закреплены на осях сателлитов 2 н 3 конического дифференциального механизма, имеющего ведущее центральное колесо 1, с которым связаны сателлиты 2 я 3, входящие во внутреннее зацепление со вторым центральным колесом 4, являющимся неподвижным. Таким образом, вилки совершают сложное движение, складывающееся из вращательного движения относительно оси водила и переносного движения вместе с водилом. Здесь радиус водила есть расстояние между осью сателлита и осью центральных колес. Такое движение захватывающего органа по сложной траектории способствует эффективности процесса копки картофеля.  [c.76]

В современных машинах и механизмах применяются зубчатые колеса диаметром от 3 мм до 9 ж с модулем от 0,05 до 75 мм. Чаще в машинах находят применение прямо- и косозубые цилиндрические колеса наружного и внутреннего зацепления. Широкое применение находят также конические колеса с прямыми или спиральными зубьями и червячные передачи.  [c.3]

На фиг. 550 показано, как применение пластинчатых слоистых прокладок упрощает сборку узла привода фрезерного станка. Отверстия в корпусе для внутреннего и наружного шарикоподшипников каждого вала растачиваются под один диаметр. Вставной фланец позволяет выполнить расточку прямо насквозь через гнездо наружного подшипника, облегчая одновременно сборку вала, подшипников и уплотнения. При сборке левого вала пластинчатые прокладки использованы в двух местах для достижения правильного зацепления сопряженных конических колес и для устранения осевой игры вала. Для правого вала достаточно одной прокладки для регулировки его осевой игры. Прежде подшипники пригонялись во время сборки, для чего производилась обкатка механизма, проверка зазора между зубьями конических колес, разборка, сош-лифовывание нескольких сотых долей миллиметра с торца конического зубчатого колеса, затем повторная сборка и т. д. до тех пор, нока не достигалась необходимая степень точности сопряжений.  [c.678]

II — муфта сцепления кулачковая двусторонная 12 — муфта сцепления фрикционная конусная 13 — муфта сцепления фрикционная с разжимным кольцом / < —муфта сцепления фрикционная (общее обозначение без уточнения типа) /5—-тормоз ленточный /5 — храповой зубчатый механизм с наружным зацеплением, односторонний 17 — шкив ва валу а — рабочий б — холостой 18 — барабан на валу (соединение свободное) изображен по заводским нормалям / —передача плоским ремнем, открытая 20 —передача цепью (общее обозначение, без уточнения типа) 2/— передачи зубчатые (цилиндрические) между параллельными валами, внешнее зацепление а — с прямыми зубьями б — с винтовыми зубьями в — с шевронными зубьями 22 — передача зубчатая (цилиндрическая) между параллельными валами, внутреннее зацепление 23 — передача зубчатая реечная (общее обозначение без уточнения типа зубьев) 2- —передача зубчатая между пересекающимися валами, коническая (общее обозначение без уточнения типа зубьев) 25 — передача зубчатая между скрещивающимися валами червячная с цилиндрическим червяком 26 — двигатель (общее обозначение без уточнения типа)  [c.98]


Рис. 112. Типы трехзвенных фрикциониглх механизмов а) цилиндрическая передача с внешним зацеплением, б) цилиндрическая передача е внутренним зацеплением, а) коническая передача. Рис. 112. Типы трехзвенных фрикциониглх механизмов а) <a href="/info/230952">цилиндрическая передача</a> с <a href="/info/7616">внешним зацеплением</a>, б) <a href="/info/230952">цилиндрическая передача</a> е <a href="/info/7865">внутренним зацеплением</a>, а) коническая передача.
Рассмотрим дифференциал с коническими колесами. На рис. 7.33 показан конический дифференциал, применяемый в автомобилях. При повороте ведущих колес автомобиля (рис. 7.34) колесо /, катящееся по внешней кривой а — а, должно пройти больший путь, чем колесо 2, катящееся по внутренней кривой Р — р. Следовательно, скорость колеса / оказывается больше, чем колеса 2. Чтобы воспроизвести это движение колес с различными угловыми скоростями, и применяется дифференциал с коническими колесами. Коническое зубчатое колесо I (рис. 7.33) получает вращение от двигателя. Это зубчатое колесо входит в зацепление с коническим зубчатым колесом 2, вращающимся свободно на полуоси А. С колесом 2 скреплена коробка Н, служащая водилом. В коробке Н свободно на своих осях вращаются два одинаковых сателлита 3. Сателлиты 3 находятся в зацеплении с двумя одинаковыми зубчатыми колесами 4 w 5, скрепленными с полуосями А и В. Если колеса автомобиля движутся по прямым, то можно считать, что моменты сил сопротивления на полуосях А и В равны, и, следовательно, сателлиты 3 находятся относительно их собственных осей вращения в равновесии, и они не поворачиваются вокруг своих осей. Тогда коробка Н вместе с сателлитами 3 и полуоси А и В вращаются как одно целое в одну и ту же сторону с одипакогюй угловой скоростью. Как только колеса автомобиля начнут двигаться по кривым различных радиусов и (рис. 7.34), сателлиты 3 начнут поворачиваться вокруг своих осей, и песь механизм будет работать как дифференциальный мехзкпзлг.  [c.162]

Классификация, По взаимному расположению геометрических осей колес различают передачи (рис. 3.76) с параллельными осями — цилиндрические внешнего или внутреннего зацепления с неподвижными (а...г) и подвижными осями, т. е. планетарные передачи (см. 3.41) с пересекаюи имися осями — конические (д, е) со скрещивающимися осями (гиперболоидные) — винтовые (ж), гипоидные (з) и червячные. В некоторых механизмах для преобразования вращательного движения в поступательное (или наоборот) применяется реечная передача (и). Она является частным случаем зубчатой передачи с цилиндрическими колесами. Рейка рассматривается как одно из колес с бесконечно большим числом зубьев.  [c.330]

Коническое колесо 2 с 46 зубьями, установленное жестко на ведущем валу 1 зацепляется с коническим колесом 3 внутреннего зацепления с 48 зубьями. Рамка 5 изготовленная за одно целое с колесом 3 соединена шаровым щарна-ром 7 с вращающимся маховиком 6 и крестовиной 4 с неподвижной полой осью 9. Такое соединение позволяет осуществить качательно-круговое движение колеса 3 при постоянном зацеплении его с колесом 2. Один оборот колеса 2 рассматриваемого механизма вызывает 23 качательных движения рамки 5 с колесом 3 и такое же число оборотов маховика 6. Рамка 5 соединяется с ножевым режущим аппаратом косилки элементом 8 щарового шарнира.  [c.679]

Рулевой механизм трактора Т-28ХЗ (см, рис, 15,3) червячного типа смонтирован в верхней части колонки 4 и состоит из цилиндрического червяка и червячного колеса J3, выполненного в виде сектора. Колонка 4 болтами крепится к переднему брусу 3 полурамы. Сектор закрепляется на шлицевом конце поворотного вала 5, жестко связанного с вилкой / колеса. Червяк 6 на двух роликовых конических подшипниках, не имеющих внутренних колец, устанавливается в стакане 7, имеющем эксцентричное расположение внутренней цилиндрической поверхности относительно наружной и размещенном в расточках колонки 4. Наличие эксцентриситета в поверхностях стакана обеспечивает возможность регулирования зацепления червячной пары, так как при повороте стакана червяк приближается или удаляется от сектора 13 червячного колеса,  [c.220]

Реверс с составным зубчатым колесом. В современных зуборезных станках для нарезания конических зубчатых колес с круговыми зубьями (модели 525, 528 и др.) реверсирование обкатной люльки обеспечивается механизмом, имеющим составное зубчатое колесо 25 (поз. 3). При вращении шестерни 21 в одном направлении движение посредством вала / и конической передачи 22—23 передается приводному колесу 24, которое также имеет постоянное направление вращения. При зацеплении колеса 24 с сектором внутреннего зацепления составного колеса 25 последнее получает вращение в одном направлении далее при проходе колеса 24 через зацепление с одним нз соединяющих,участков составного колеса происходит процесс рспсрсирования при зацеплении колеса 24 с сектором внешнего аиегктения составного колеса последнее вращается в противоположную сторону. Для обеспечивания возможности зацепления кплог 1 2-4 со всеми участками составного зубчатого колеса 25, вал // с кареткой К, несущей на себе коническую передачу 22—23 и колесо 24, может перемещаться в радиальном направлении.  [c.22]


Смотреть страницы где упоминается термин Механизм с внутренним коническим зацеплением : [c.113]    [c.456]    [c.269]    [c.119]   
Теория механизмов (1963) -- [ c.41 ]



ПОИСК



Зацепление внутреннее

Зацепление коническое

Механизм конический



© 2025 Mash-xxl.info Реклама на сайте