Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы расчета одномерные вычисления

При расчете двумерных и трехмерных конструкций, а также стержней при комбинированном действии силовых факторов применение методов линейного программирования возможно лишь при кусочно-линейной аппроксимации поверхностей текучести. Соответствующие методы расчета применительно к задачам приспособляемости были развиты сравнительно недавно. Общие вопросы, связанные с их применением, рассматривались в работах [10, 22, 24, 104, 164, 181]. Как и при расчетах одномерных стержневых систем, задачи, полученные на основе статической и кинематической теорем, образуют двойственную пару задач математического программирования [72, 109]. Конкретные примеры расчета осесимметричных пластин и оболочек методами линейного программирования даны в работах [10, 22, 66]. Здесь для получения дискретной модели конструкции использовались конечные суммы, рассматривались также вопросы точности вычислений. Расчету тонкостенных сосудов посвящены работы [126, 131], в первой из них (в отличие от [22, 66]) распределение остаточных напряжений было принято пропорциональным двум параметрам.  [c.38]


Проверка эффективности принятого метода решения произведена на тестовом примере расчета при действии на трубку только переменного внутреннего давления и теплосмен (т. е. без изгиба). Полученные неупругие деформации сопоставлены с результатами расчета по схеме обычной одномерной осесимметричной задачи (10.18). При 85 представительных точках (на каждом радиусе пять точек, в то время как в одномерной задаче было принято одиннадцать) вычисленные с помощью векторного метода значения размаха пластической деформации и деформации, накапливаемой за цикл, отличались от найденных в одномерной задаче не более чем на 4 и 2 % соответственно. Несмотря на то, что разбиение поперечного сечения на конечные элементы в векторном методе не было осесимметричным, отклонения от осевой симметрии полученных полей пластической деформации не превышали 2 %. Время расчета одного цикла примерно вдвое превышает время счета в одномерной задаче, хотя число представительных точек отличается почти в 8 раз.  [c.244]

Малое различие результатов расчета скорости на оси при 2 //г < 1 позволяет в дальнейшем пользоваться в этой области любым из методов, в зависимости от конкретной задачи. Существенное различие результатов вычисления скорости на оси в области 25/й > 1 показывает, что, как уже указывалось ранее, методикой расчета в предположении неизменности давления торможения на оси пользоваться нельзя. И скорость на оси необходимо восстанавливать из результатов одномерного расчета с учетом трения.  [c.54]

Результаты для этого одномерного случая также обнаруживают тенденцию к увеличению точности метода конечных элементов при переходе к элементам более высокого порядка. Хорошие результаты при небольшом дополнительном объеме вычислений дают элементы с квадратичной интерполяцией. При этом отсутствуют усложнения, характерные для использования элементов высокого порядка и связанные с громоздкими вычислениями их матриц. Принимая во внимание эти и другие тесты, в частности, проведенные для задач расчета напряжений в конструкциях [21, для практического использования можно рекомендовать квадратичную модель.  [c.111]

К положительным элементам одномерного варианта МГЭ (простота логики формирования разрешающей системы уравнений, хорошая устойчивость численного процесса, непосредственное определение начальных параметров каждого обобщенного стержня из разрешающей системы и т.д.) добавляются существенно важные для расчета пластинчатых систем факторы. Ядра интегральных уравнений (функции Грина) в МГЭ не содержат сингулярных точек. По этой причине уравнение (6.20) снимает проблему вычисления многомерных сингулярных интегралов. Исключается и проблема построения численного решения в окрестностях угловых точек пластины, что весьма актуально в прямом методе граничных элементов [7]. Как будет показано ниже, этот момент позволяет существенно повысить точность решения задач устойчивости тонких пластин по предложенному алгоритму МГЭ. Использование обобщенных функций для описания нагрузки ц х, у) в (1.20) также приводит к неожиданным результатам. Реальной становится возможность вычисления касательных и нормальных напряжений в точках приложения сосредоточенных нагрузок. В этих точках, в частности, поперечная сила =0,25 (1/Ах) 00 при Ах 00 [3, с. 173]. Здесь можно отметить, что неопределенность в  [c.198]


В виде рядов выписывается решение в случае произвольно заданного распределения температур при т О для тел простейшей формы и одномерных задач (см. разд. 4.2). Однако и в этом случае вычисление коэффициентов ряда является часто весьма трудоемким. В связи с этим наряду с аналитическими развивались и численные методы решения нестационарных задач теплопроводности, причем с появлением электронных счетных машин эти методы приобрели решающую роль в проведении точных инженерных тепловых расчетов (прогрев теплозащитных покрытий, камер сгорания и сопел ЖРД, тепловые режимы ИСЭ). Численные методы являются, пожалуй, единственным инструментом решения нелинейных задач и задач теплопроводностей тел сложной формы.  [c.91]

Используя данный метод, можно решать одномерные задачи с хорошей точностью вычислений и с небольшим временем вычислений. Метод позволяет получать результаты на грубых сетках N = 1800, h = 0.26, = 90, = 0.2, = 66000, А/ = 0.01, время вычислений на 1 шаг 4.2"), которые хорошо согласуются с более подробными расчетами.  [c.164]

Очевидно, что при решении обратной задачи целесообразно задавать распределение вдоль оси такого параметра, который слабо-зависит от самого процесса конденсации и может быть просто вычислен для замороженного течения. Как показали результаты большого числа параметрических расчетов одномерных и двумерных течений в соплах [И], к числу таких параметров относятся плотность смеси р, скорость смеси 1 7 и плотность тока смеси рШ. Действительно, из результатов расчегов следует, что в неравновесном течении, по сравнению с замороженным, плотность и скорость смеси соответственно увеличиваются и уменьшаются на а давление и температура—-на 15...20%. Из результатов расчетов следует также [И], что процесс неравновесной конденсации практически не оказывает влияния на положение линий тока при двумерном течении в сопле и плотность тока рУ , поскольку увеличение плотности компенсируется уменьшением скорости. Из сказанного следует, что в рамках одномерного течения можно с высокой точностью исследовать и двумерные течения с неравновесной конденсацией Для этого необходимо рассчитать какпм-либо методом (например, методом характеристик) двумерное замороженное течение без конденсации и, получив из такого расчета распределение плотности тока  [c.205]

К положрггельным элементам одномерного варианта МГЭ (простота логики формирования разрешаюш,ей системы уравнений, хорошая устойчивость численного процесса, непосредственное определение начальных параметров каждого обобш,енного стержня из разрешаюш,ей системы и т.д.) добавляются факторы, существенно важные для расчета пластинчатых систем. Ядра интегральных уравнений (функции Грина) в МГЭ не содержат сингулярных точек. По этой причрше уравнение (7.20) снимает проблему вычисления многомерных сингулярных интегралов. Исключается и проблема построения численного решения в окрестностях угловых точек пластины, что весьма актуально в прямом методе граничных элементов [29]. Как будет показано ниже, этот момент позволяет существенно повысить точность  [c.407]

При переходе от трехмерного физического пространства к одномерным структурам (канал, трубопровод и т. п.) естественно использовать для описания течения РГ ряд гидродинамических характеристик. Важнейшими из них для решения задач вакуумной техники являются понятия молекулярного потока через канал и проводимости (сопротивления) канала. В исторической ретроспективе поиски корректных методов вычисления этих величин, стимулируемые техническими потребностями, дали, по-видимому, решающий толчок серии классических исследований Кнудсена, Смолу-ховского и Клаузинга. Не удивительно поэтому, что рассмотрению процессов молекулярного течения в каналах и трубах посвящена едва ли не большая часть публикаций по вакуумной технике. Начиная с основополагающей книги Г. А. Тягунова [108], этим вопросам уделялось значительное внимание во всех монографиях по расчету и проектированию ВС. Очень подробно оии освещены, в частности, в работах [17, 32]. Поэтому ограничимся только перечислением важнейших формул и приведем необходимые табличные данные по проводимости трубопроводов, каналов и отверстий, причем <цеит будет сделан на методику Клаузинга. Его подход, реализованный еще в 30-е годы, можно рассматривать в контексте о пого из универсал ,ных методов  [c.27]


Альтернативным (взаимоисключающим) подходом к вычислению свойств переноса электронов в жидких металлах является вычисление электронных состояний, т. е. зонной структуры для разупорядоченной системы. Несмотря на то что в последние годы в этой области достигли значительного успеха, результаты теоретических расчетов пока невозможно сравнивать с экспериментальными данными. Более детально этим занимался Кьюзак [291]. Большая часть опубликованных работ была проделана с моделью одномерной цепочки жидкости, в которую разупорядочение вносили только, изменяя межатомный промежуток. Такие модели, не способные дать нужные результаты для сравнения с действительной жидкостью, могут помочь найти методы вычисления для использования в более точных аппроксимациях [298, 299, 323, 325]. Результаты, полученные Мейкинзоном и Робертсом [325], показывают, что энергетический разрыв может быть даже при нарушении дальнего и ближнего порядков, но он быстро закрывается, когда степень разупорядочения увеличивается.  [c.109]

В теории численного интегрирования известно много способов определения интегралов, тем не менее применительно к методу конечных элементов и к задачам апостериорной обработки (вычисление интегралов) метод Гаусса имеет преимущества при интегрировании на элементах, так как он требует меньше вычислений и обеспечивает высокую точность, а метод Ньютона Котеса лучше для вычисления криволинейных интегралов, где применение эквидистантных координат упрощает расчеты, чего нет в методе Гаусса Напомним, наконец, что для п точек на одномерном сегменте метод Ньютона-Котеса имеет порядок (и — 1), тогда как метод Гаусса-(2и — 1)  [c.87]

Фуджи дал также полезный анализ устойчивости разностных аппроксимаций (по временной переменной) уравнения (24) в методе конечных элементов. Предположим, например, что члены Q" заменяются центральными разностными отношениями второго порядка (А/)-2(д"+ — Q ). Из теории конечных разностей хорошо известно, что величина At должна быть ограничена, или же вычисляемые приближения будут экспоненциально расти вместе с п. Для одномерного волнового уравнения условия устойчивости процесса вычислений имеют вид At h/ 3 для согласованной матрицы массы М и Ai h — для диагональной матрицы, полученной при приближенном расчете матрицы М. (Тонг [Тб] заметил в последнем случае дополнительную устойчивость.) Фуджи исследовал и другие конечноразностные схемы, а также гиперболические уравнения более общего вида для краевых задач с начальными условиями, в том числе и уравнения упругости.  [c.293]


Смотреть страницы где упоминается термин Методы расчета одномерные вычисления : [c.443]    [c.120]    [c.123]    [c.109]    [c.367]    [c.185]   
Физика дифракции (1979) -- [ c.251 ]



ПОИСК



Газ одномерный

Методы вычислений

Одномерные вычисления



© 2025 Mash-xxl.info Реклама на сайте