Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цирконий окислы

Реакция циркония с кислородом сопровождается образованием на его поверхности окисной пленки. Однако при 450 °С окисная пленка растворяется в металле, вследствие чего происходит дальнейшее поглощение кислорода. Удалить кислород из циркония нагревом в вакууме не удается. Инертные газы — аргон и гелий — не растворяются в цирконии, но при недостаточной их чистоте цирконий окисляется и на его поверхности образуется слой окислов черно-синего цвета. Перед пайкой цирконий и его сплавы травят в смеси водных растворов плавиковой и азотной кислот (3 мм азотной, 5 мл плавиковой кислоты и 92 мл воды).  [c.260]


Следует отметить, что наследственная структура отчетливей выявляется в молибдене, легированном цирконием, чем в чистом молибдене (подобно тому, как это наблюдалось для железа и его сплавов, легированных оловом). По-видимому, дисперсные соединения циркония (окислы, карбиды) стабилизируют дефекты исходной структуры.  [c.210]

Органические стекловидные эмали применяются для домашних кувшинов, мисок и других, кухонных предметов, где не требуется специальной стойкости по отношению к разным реагентам. Стойкость к кислотам улучшается увеличением содержания кремния и добавкой титана или циркония (окислы, обладающие скорее кислотными, чем основными свойствами).  [c.541]

Как следует из табл. П1.11, чем меньше химическое сродство металла данного окисла к кислороду (менее отрицателен изобарно-изотермный потенциал образования данного окисла AZ при температуре жидкого шлака, контактирующего с каплей), тем интенсивнее окисляется углерод и менее интенсивно — кремний и марганец. Только более высоким сродством к кислороду (более отрицательным А2°), несмотря на более высокую температуру плавления ( = 2700° С [56]), можно объяснить меньшую способность оксида циркония окислять углерод по сравнению с оксидом хрома. Окислы железа и никеля с температурой плавления ниже 2000° С менее интенсивно, чем окислы хрома, окисляют углерод и весьма интенсивно окисляют марганец и, особенно, кремний (рис. П1.39 и П1.34).  [c.264]

Термисторы, используемые при температурах выше 300°С, изготавливаются из более термостойких окислов, чем окись магния или никеля. Помимо повышенной термостойкости, окисел должен также иметь повышенную энергию активации [которая связана с В в (5.39)], чтобы обеспечить достаточную чувствительность прибора. Этим требованиям удовлетворяют окислы редкоземельных элементов, так что их смеси используются в термисторах, работающих до температуры 1000 К. Для более высоких температур существуют термисторы на основе окислов циркония с небольщой добавкой окислов редкоземельных металлов. Термисторы представляют особый интерес для  [c.245]

Pt — 10 % Rh. Предварительно было показано, что MgO не вступает в реакцию с платиной и ее сплавами. Однако и платина, и ее сплавы, которые практически полностью инертны по отношению к подобным окислам в воздухе, начинают реагировать с ними при понижении парциального давления кислорода ниже некоторого уровня. Окиси алюминия, циркония и тория в этих условиях разлагаются на кислород и свободный металл, который растворяется в электродах термопары. На рис. 6.5 показаны результаты исследования термопары, нагревавшейся до 1450 °С в течение 1400 ч, в результате чего ее термо-э.д.с. упала на величину, эквивалентную 200 °С. Видно, что в электроде из чистой платины оказалось очень много родия, попавшего туда как из электрода с 13 % родия, так и из чехла, где его было больше в связи с гораздо большим объемом. В той области платинового электрода, где температура была ниже 1200°С, загрязнение родием очень незначительно.  [c.284]


Безокислительные условия горячей и теплой деформации ниобия, тантала, титана, циркония, ванадия, хрома (вторая группа) не обеспечиваются при технически допустимом вакууме, так как они обладают низкой упругостью диссоциации окислов. Однако анализ кинетики окисления показывает, что при переходе к низкому вакууму скорость протекания реакций окисления резко уменьшается. Поэтому изменение глубины вакуума должно вызвать изменение толщины и свойств окисной пленки на металле (см. рис. 278).  [c.527]

При изучении влияния различных дисперсных частиц окислов и карбидов, осаждаемых совместно с электролитическим никелем, на величину внутренних напряжений и наводороживание были исследованы окислы алюминия и циркония, карбиды вольфрама, кремния, ниобия, титана и хрома, добавляемые в одинаковом количестве (1 %) в сульфатно-хлоридный электролит следующего состава  [c.106]

Цирконий в виде порошка и губчатой массы адсорбирует газы даже на холоду. В компактном состоянии цирконий поглощает газы при повышенных температурах. Поглощение газов увеличивается с повышением температуры вплоть до 300—400° С, а при более высокой температуре понижается. В среде кислорода и галоидов компактный цирконий загорается при 350—400° С с образованием соответственно окисла или галоидных соединений. На воздухе компактный цирконий загорается при 600—800 С. В риде порошка он способен самовозгораться на воздухе. Сгорание порошка происходит чрезвычайно интенсивно, С ярким блеском и развитием высокой температуры.  [c.472]

Карбид Zr с нитридом ZrN и низшими окислами циркония, а также с карбидами других тугоплавких металлов образует твердые растворы.  [c.488]

Для защиты серебра от потускнения предлагают также осаждение бесцветных прозрачных пленок окислов металлов 3-, 4- н 5-й групп периодической системы. Пленки получаются при катодной обработке изделий в растворах хлоридов, сульфатов или нитратов бериллия, титана, тория, циркония и других металлов. Наибольшее распространение получил сульфат бериллия. При электролизе происходит электрофоретическое осаждение на катоде окиси бериллия. Раствор содержит 3.4 г сульфата бериллия и 5 г борной кислоты, pH поддерживается в пределах 5,5—5,9 добавлением аммиака. Вне этих пределов pH работать нельзя, так как пленки не образуются. Катодная плотность тока применяется в пределах  [c.29]

Фазово-проходной метод получил широкое распространение при неразрушающем контроле качества огнеупорных изделий из различных окислов, в том числе алюмосиликат-ных, магнезиальных, хромомагнезитовых, содержащих цирконий, изготовленных полусухим прессованием, шликерным литьем, плавленых. Изделия различны по размерам и конфигурации (прямоугольные и клиновидные с плоскими поверхностями, в виде толстостенных цилиндрических  [c.247]

Титан. Для защиты титана и сплавов на его основе разработаны коррозионностойкие стеклоэмали, характеризующиеся высоким суммарным содержанием кремнезема и других химически устойчивых окислов, — двуокиси циркония, окиси алюминия, двуокиси титана, окиси хрома и др., и низким содержанием окислов щелочных металл од. Стеклоэмали наплавляются на титан в атмосфере воздуха. Эмали испытывались в расплавах галоидных солей таллия при 550° С, в парах тетрахлорида титана при 950° С, в кипящих минеральных кислотах, а также в качестве электроизоляционных покрытий, работающих в морской воде при высоком давлении. Испытания показали, что эмали для титана обладают несравненно более высокой химической стойкостью, чем эмали, предназначенные для стальной химической аппаратуры.  [c.6]

Стеклокерамические покрытия составов № 52, 58, 77, содержащие в качестве керамических добавок окислы циркония, хрома, титана и циркон, наносились на образцы шликерным методом и обжигались в воздушной атмосфере при температурах, указанных в таблице. При этом получался ровный остеклованный слой покрытия (толщиной 0.3—0.4 мм), без пор и отколов, с хорошей прочностью сцепления.  [c.152]

Среди всех синтезированных покрытий высокими оптическими характеристиками (рис. 2), способностью прочно закрепляться при низкой температуре на поверхности легкоплавких сплавов, устойчивостью во влажной атмосфере и к термическим ударам по режиму —60- — -120° С, вибростойкостью от 10 до 2500 Гц при ускорении от 1 до 12 g, относительной пластичностью при испытаниях на изгиб обладают покрытия на основе пигмента из смеси окислов магния, кремния, циркония или иттрия со связкой двойного калиево-литиевого силиката.  [c.202]


Керамические покрытия — это покрытия из высокоплавких металлов, окислов и карбидов, полученные с использованием плазменного напыления. Наиболее распространенными керамическими покрытиями являются покрытия из окиси алюминия, двуокиси циркония, карбида вольфрама. Такие покрытия можно использовать для защиты деталей, подверженных воздействию расплавленных металлов и стекла, повышения жаростойкости деталей, изготовленных из углеродистых сталей, повышения износостойкости. Технология плазменного напыления позволяет получать керамические покрытия толщиной до  [c.130]

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]

И циркония были проведены измерения абсорбции бора и кадмия. Результаты объяснимы иа основе ионного обмена между гидратированными окислами на поверхности и ионами ядов (табл. 6.10).  [c.192]

По интенсивности разрушающего действия на стекло химические реагенты можно расположить в следующий ряд по убывающей степени плавиковая кислота фосфорная кислота - растворы щелочей -> растворы щелочных карбонатов -> кислота вода. Химическая устойчивость стекла главным образом определяется его природой (составом). К числу компонентов стекла, повышающих его химическую стойкость, относятся окислы кремния, циркония, титана, бора (до 12%), алюминия, кальция, магния и цинка понижают химическую стойкость окислы лития, натрия, калия, бария и свинца.  [c.454]

По этой встроенной системе были созданы отечественные ядерные ТЭП Топаз [115]. Испытания реактора Топаз-1Ь> подтвердили воспроизводимость характеристик первого образца установки Топаз-1 [115]. Однако было замечено, что после 1200 ч работы реактора наблюдалось небольшое снижение его электрической мощности. Это явление и сравнительно низкий КПД преобразования в реакторах Топаз-1 и Топаз-П обусловлены, прежде всего, отравлением эмиссионной поверхности окислами титана и циркония, в незначительных количествах входящих в состав молибденового сплава ВМ-1, из которого был изготовлен катод электрогенерирующего канала (ЭКГ). Окислы образуются при дегазации в условиях недостаточного вакуума и обладают малой работой выхода, что ухудшает сорбцию цезия н препятствует образованию металлопленочного катода.  [c.22]

При испытании на ползучесть (табл. 3.10) лучшие результаты были получены при легировании молибдена хромом. При упрочнении, молибдена дисперсными окислами максимальное сопротивление ползучести было отмечено для сплавов с двуокисью титана или циркония.  [c.64]

Для создания защитной атмосферы в установках с натриевым теплоносителем рекомендуются гелий и аргон, содержащие кислород в тысячных долях процента [1,51]. Водород значительно диффундирует через нержавеющую сталь уже при температуре 600° С, и поэтому для создания защитной атмосферы мало пригоден [1,52]. В ряде случаев для очистки расплавленного натрия и защитного газа от кислорода и других примесей (воды, водорода, азота, углерода) рекомендуется контактировать натрий и газ при температуре свыше 500° С с цирконием, титаном [1,52] или сплавом 50% титана и 50% циркония. В последнем случае в системе не образуется твердых частиц. В атмосфере азота происходит азотирование нержавеющей стали в расплавленном натрии при температуре свыще 480° С [1,51], что отражается на механических свойствах материала. Очищать натрий от окислов можно также путем пропускания натрия (при температуре 250° С) через фильтр, изготовленный из аустенитной нержавеющей стали.  [c.46]

Цирконий при взаимодействии с кислородом О бразует единственное соединение — двуокись циркония 2гОг с моноклинной структурой. При температурах 300—700° С металл покрывается окалиной темно-серого или голубовато-черного цвета, прочно сцепляющейся с металлом [351, 688, 697]. По мере дальнейшего повышения температуры появляются белые пятна двуокиси циркония и начинается образование чешуек [570, 697]. Эти пятна непрерывно расползаются по образцу, пока он не станет сплошь белым (спустя сутки при 700°С или через несколько минут при 900° С). Если цирконий окисляется при 900° С на воздухе, то в окалине содержится и азот под порошкообразным наружным слоем окалины в тонком внутреннем окисном слое темного цвета образуются тонкие вертикальные трещины, по которым и кислород, и азот проникают в глубь металла [351]. При температурах выше 1050° С внутренний темный слой, состоящий из моноклинной и тетрагональной модификаций двуокиси циркония и его натрида 2гК с кубической решеткой, распространяется на большую часть толщины o кaлины [698].  [c.298]

Наличие некоторых примесей меняет способствовать ск.пои-ности сварных соединений к образованию трещин. Так, например, висмут, образующий ряд окислов BiO, Bi. Og, B12O4, Bi 205, дает легкоплавкую эвтектику с температурой плавления 270° С, а свинец, образующий окислы РЬО, РЬОд, PbgO,,, дает легкоплавкую эвтектику с температурой плавления 326 С. Но указанной причине должно б],1ть резко ограничено содержание этих примесей (Bi <0,002% РЬ < 0,005% ), либо они долн 1ы быть связаны в тугоплавкие соединения введением в сварочную ванну таких элементов, как церий, цирконий, играющих одновременно роль модификаторов.  [c.344]


Цирконий при комнатной тем-не[)атуре является устойчивым метал.чом. При те.миературс порядка нескольких сот градусов он реагирует с О2, N2. СО , Н. и другими газами с образованием соответственно окислов, нитридов, карбидов, гидридов и т. д. Скорость окисления циркония может быть значительно снижена лепркякшием io кремнием.  [c.144]

Механизм процессов, приводящих к резкому ускорению коррозии, еще не достаточно ясен. Его объясняют появлением трещин в оксидной пленке вследствие концентрирования напряжений в толще оксида. Однако, когда металл окисляют в кислороде, скорость коррозии не увеличивается, за исключением случаев очень длительной выдержки и очень толстой оксидной плёнки. Оказалось, что ведущую роль играет водород, выделяющийся в результате разложения воды при взаимодействии с металлом, и особенно та его часть, которая растворяется в металле, приводя к более высоким скоростям окиздения [55]. Данные рентгеновских исследований показывают, что в воде на поверхности циркония как до, так и после ускорения коррозии присутствует моноклинный диоксид ZrOj. Имеются также некоторые сведения, что первоначально возникающий оксид имеет тетрагональную структуру [56].,  [c.381]

Известны покрытия, полученные электрофоретическим способом из окиси алю мпния, двуокиси циркония, карбидов, силицидов и нз некоторых окислов [25, 26, 52].  [c.100]

Известно, ЧТО в зависимости от назначения покрытий и для придания специальных свойств в покрытия в качестве дисперсной фазы могут добавляться твердые упрочняющие абразивные частицы (окислы циркония и алюминия, каолин, карбиды кремния, титана, вольфрама) и мягкие слоистые частицы твердых смазок (гексагональный нитрид бора, графит, дисульфид молибдена и др.). Для увеличения твердости и сопротивления истиранию в покрытие включается от 25 до 50 % неметаллических частиц, таких, как карбиды, оксиды, бориды, нитриды. Включение в покрытие дисперсных частиц влияет на водородосодержание и величину внутренних напряжений осадков.  [c.106]

Сырьевые материалы, используемые для керамики, делятся на непластичные (кристаллообразующие) и пластичные компоненты. К основным кристаллообразующим компонентам опго-сятся такие минералы как кварц, глинозем и тальк окислы циркония, бария, кальция, магния, титана, а также карбонаты и другие соединения пластичные, то есть глинистые материалы облегчают оформление заготовок методами пластической деформации (протяжка, штамповка, литье в гипсовые формы) и вместе с тем являются стеклообразующими компопептами.  [c.141]

Эти соображения подтверждены термодинамическим расчетом и другими приводимыми ниже данными. Изучены покрытия из окислов алюминия, циркония, титана и хрома. Проанализирована возможность протекания реакций между Ре и А12О3, 7 0 , ТЮ и СгдОз, приведенных ниже  [c.239]

Выполнен термодинамический расчет возможности протекания химических реакций и образования химических соединений в промежуточтгом слое по контакту металлическая подложка—покрытие для покрытий из окислов алюминия, циркония, титана, хрома. Показана невозможность протекания упомянутых реакций в момент формирования покрытия. Результаты термодинамического подсчета подтверждены рентгенографическим и электронномикроскопическим исследованиями пограничных слоев между металлом и покровом. Выяснено, что связь газопламенных покрытий с металлической подложкой, по-видимому, носит чисто механический характер. Электронномикроскопические исследования скопов покрытий позволили наблюдать дислокационные картины, свидетельствующие о наличии и весьма сложном характере распределения напряжений в слое покрытия. Библ. — 3 назв., рис. — 4, табл. — 1.  [c.346]

Композиционные покрытия никель—двуокись циркония, никель—двуокись церия, медь—окись алюминия получены методом химического восстановления из суспензий, в которых дисперсионной средой являются щелочные растворы химического никелирования или меднения, а дисперсной фазой — один из вышеуказанных окислов. Изучены условия образования и ряд физико-механических свойств покрытий. Показано, что введение окисных добавок в растворы химической металлизации изменяет скорость осаждения покрытий и приводит к сдвигу стационарного потенциала. Лит, — 3 назв., ил. — 2.  [c.258]

Важным критерием оценки способности элемента реагировать с окисью алюминия Саттон и Файнголд считают свободную энергию образования его окисла. Легирующий никелевую матрицу элемент очень активно реагирует с окисью алюминия, если его окисел имеет большую отрицательную величину свободной энергии образования. По этой причине сплавы никеля с титаном и цирконием химически очень активны, тогда как никель-хромовые сплавы реагируют с АЬОз умеренно. Степень химической активности можно регулировать только путем изменения содержания этих элементов в никелевой матрице. Элементы, образующие менее стабильные окислы по сравнению с окисью алюминия, могут участвовать в реакции лишь в том случае, если они получают кислород из других источников (например, из атмосферы). Как и в приведенном ранее примере реакции меди с окисью алюминия, Мур [26] показал, что образование связи между никелем и AI2O3 зависит от доступа кислорода. Шпинель NiAl204 образуется только в присутствии кислорода.  [c.86]

В настоящее время получены нитевидные кристаллы железа, олова, золота, платины, кадмия, германия, серы и окислов алюминия, хмагния, циркония, молибдена, ниобия и др. Еще в конце прошлого века был запатентован способ получения нитевидных кристаллов серебра путем восстановления его хлористой соли в атмосфере водорода. За последнее время этот способ претерпел значительные усовершенствования.  [c.66]

К неорганическим наполнителям относятся молотый кварц, слюда, тальк тонкодисперсные порошки металлов (алюминий, железо и др.) и окислов (кремнезем двуокись титана, окислы магния, бария, кальция и др.), карбиды (карбид кремния и др.), некоторые соли (сернокислый барий, циркон, волостеннт и др.) асбестовые и стеклянные волокна, нити, ткани и т. п.  [c.12]

Наиболее теплопроводны кварцевое и боросиликатное стекла, а свинец или барийсодержащие имеют самую низкую теплопроводность. Повышают теплопроводность стекла окислы алюминия и железа. Тепловое расширение существенно уменьшается для стекол с повышенным содержанием окислов кремния, бора, титана, циркония риллия, цинка и резко возрастает при увеличении в составе стекла окислов бария, свинца, натрия, калия и лития.  [c.452]

Затем спектр излучения наносится на сетку кривых излучения черного тела. Кривая черного тела, которая касается экспериментальной кривой излучения и лежит выше ее при всех других длинах волн, дает максимальную яркостную температуру, которая является нижним пределом температуры разрушающейся поверхности. Почти каждый материал имеет по крайней мере одну область длин волн, в которой его степень черноты близка к единице ( 0,95) независимо от температуры поверхности. Для таких окислов, как окись магния, двуокись циркония и окись бериллия, область максимальных значений находится между 8 и 10 мкм, у металлов — в ультрафиолетовой области, у термопластов (фторопласт, полиэтилен) высокая степень черноты наблюдается при 334 >->Змкм.  [c.334]

Рис. n-IV-27. Сравнение зависимостей от температуры интегральных нормальных степеней чер ноты окислов кремния S1O2, циркония ZrOj и различных марок графита и пирографита С [Л. П-13, П-17]. Рис. n-IV-27. Сравнение зависимостей от температуры интегральных нормальных степеней чер ноты окислов кремния S1O2, циркония ZrOj и различных марок графита и пирографита С [Л. П-13, П-17].

При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]


Смотреть страницы где упоминается термин Цирконий окислы : [c.210]    [c.305]    [c.7]    [c.181]    [c.134]    [c.59]    [c.89]    [c.91]    [c.130]    [c.51]    [c.93]    [c.50]   
Окисление металлов и сплавов (1965) -- [ c.298 ]



ПОИСК



Окислы

Циркон

Цирконий



© 2025 Mash-xxl.info Реклама на сайте