Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ударной волны пограничного слоя взаимодействие

При отсутствии взаимодействия между пограничным слоем и ударной волной скачок должен быть прямым, а поток за скачком — однородным. Однако эксперимент показал, что скачок непрямой и распределение плотностей за скачком неоднородно. Между пограничным слоем и ударной волной существует определенное взаимодействие. Несмотря на наличие такого взаимодействия, хорошо различаются две зоны зона пограничного слоя, где наблюдается значительное изменение плотности, и зона невязкого потока, поле которого имеет вихревой неоднородный характер.  [c.78]


Третья задача связи (ударный слой) должна привести к вычислению поправки к классическим соотношениям Рэнкина — Гюгонио, необходимой для того, чтобы вычисления на континуальном уровне давали те же самые результаты, что и решение уравнения Больцмана вдали от ударного слоя. Та же необходимость возникает в теории Навье — Стокса [40], когда требуется учесть взаимодействие между ударным и пограничным слоями. Несмотря на то что уравнения Навье — Стокса дают гладкую структуру ударной волны, они должны допускать разрывы, чтобы описать кинетические эффекты. Для разложения Гильберта кинетическое решение задачи связи трудно уже в нулевом приближении (задача о структуре скачка см. разд. 6 гл. VII), но условия сращивания тривиальны (соотношения Рэнкина — Гюгонио) аналогичная задача для теории Чепмена — Энскога (или модифицированного разложения, рассмотренного в разд. 4) пока еще не сформулирована.  [c.291]

Теория свободного взаимодействия впервые была предложена в работах [1,2] при изучении задачи локального взаимодействия падающей ударной волны с ламинарным пограничным слоем. Уравнения, описывающие свободное взаимодействие внешнего стационарного трансзвукового потока с ламинарным пограничным слоем, были впервые выведены в [3]. В результате первых численных расчетов этих уравнений было исследовано поведение поверхностного трения [4-6]. Вопрос о возникновении сверхзвуковых зон и замыкающих их ударных волн, а также взаимодействие этих ударных волн с пограничным слоем является одним из основных в трансзвуковой газовой динамике. Еще на заре развития трансзвуковой газовой динамики были произведены эксперименты [7], которые показали, что пограничный слой существенно влияет на формирование трансзвукового течения, в частности на структуру сверхзвуковых зон, и взаимодействие ударной волны с пограничным слоем носит неклассический характер. Выводы работы [7] полностью согласовывались с выводами появившейся затем теории свободного взаимодействия [1-3]. В настоящей работе этот вопрос впервые изучается в рамках теории свободного взаимодействия в случае обтекания малой неровности установившимся трансзвуковым потоком газа. Начало исследованиям о влиянии малой неровности, расположенной в нижнем вязком подслое, на течение в области свободного взаимодействия при сверхзвуковых скоростях обтекания было положено в [8, 9].  [c.50]


Так, например, если в результате взаимодействия пограничного слоя на пластине и падающей на нее ударной волны (при критическом отношении давления в ней) возникает Л-образ-ный скачок, сопровождаемый отрывом пограничного слоя (рис. 10.66), то, кроме потерь в системе ударных волн, возникают принципиально новые потери, связанные с наличием оторвавшегося потока. Если густота решетки пластин столь велика, что оторвавшийся поток внутри межлопаточного канала полностью выравнивается, то суммарная величина потерь остается такой же, как и для рассмотренного выше случая, когда влияние взаимодействия пограничного слоя и скачка не учитывалось произойдет только перераспределение потерь между зоной ударных волн и областью выравнивания потока. Увеличение потерь на выравнивание полностью компенсируется уменьшением по-  [c.91]

Рис. 7.4.3. Взаимодействие между головной ударной волной н пограничным слоем на плоской пластинке Рис. 7.4.3. <a href="/info/22496">Взаимодействие между</a> <a href="/info/13959">головной ударной волной</a> н <a href="/info/510">пограничным слоем</a> на плоской пластинке
Расчетные и экспериментальные исследования нестационар-ности рассматриваемого типа [66] проведены без учета пограничного слоя в решетках. Воздействие системы волн на характеристики пограничных слоев не изучалось. Первые опытные данные, полученные в МЭИ [50], подтверждают предположение о существенной перестройке пограничных слоев в результате взаимодействия с ударными волнами и волнами разрежения. Экспериментальное изучение волновой структуры в решетке проведено на модели, включающей решетку с суживающимися каналами /, оснащенную малоинерционными датчиками 1—7. Возмущения создавались вращающимися стержнями //, расположенными за решеткой (рис. 5.25, а).  [c.190]

В последующем при решении задачи о течении газа с большими скоростями с использованием теории пограничного слоя предполагается, что рассматриваемые области расположены достаточно далеко от зоны взаимодействия ударных волн или от интенсивного вихревого течения во внешнем потоке.  [c.24]

Волновое сопротивление вызывается двумя факторами образованием ударной волны (из-за возникновения на поверхности самолета местных сверхзвуковых скоростей) и взаимодействием ее с пограничным слоем.  [c.8]

Структура турбулентного потока, тормозящегося в поле соленоида, показана на рис. 3, г (8 = 5, вариант 13 в табл. 2). Отрыв пограничного слоя отсутствует, толщина пограничного слоя на входе в соленоид имеет относительно большую величину в результате предшествующего взаимодействия с магнитным полем. В зоне соленоида, вплоть до выхода из него, толщина пограничного слоя остается почти постоянной. На выходе из соленоида генерируется ударная волна,и толщина пограничного слоя возрастает вниз по потоку от выходного сечения соленоида. Напомним, что, в противоположность описанной ситуации, при том же самом значении 8 = 5 в случае невязкого течения образуется ярко выраженная каверна (см. рис. 3, а). Полезно также обратить внимание на то, что магнитное поле в случае турбулентного потока наиболее сильно деформирует поле скорости в пограничном слое вблизи стенки канала.  [c.400]

Основные научные направления аэродинамика пространственных тел и крыльев при сверх- и гиперзвуковых скоростях, теория сверхзвуковых конических течений газа, взаимодействие ударных волн с пограничным слоем, проникание и динамика тел в плотных средах, задачи оптимального профилирования.  [c.653]

Специфической особенностью гиперзвуковых течений разреженного газа является необходимость учета сложного взаимодействия ударной волны с пограничным слоем. Для  [c.335]


Таким образом, проблема устойчивости в широком смысле должна включать вопрос о взаимодействии между пограничным слоем и внешним потоком, в частности, между пограничным слоем и ударной волной. На больших высотах, т. е. в среде с малой плотностью, излучаемое тепло также должно быть принято во внимание Охлаждение стенки, вследствие излучения может увеличить устойчивость ламинарного пограничного слоя в широких пределах. Что касается вполне развитой теории турбулентного пограничного слоя и турбулентного отрыва, то эти задачи не были решены даже в случае несжимаемой жидкости. Задача об отрыве в сверхзвуковом потоке тесно связана с задачей об образовании ударных волн. Этот вопрос будет рассмотрен в разделе 12. Он имеет фундаментальное значение для проблемы перехода через скорость звука.  [c.50]

Экспериментальные результаты с очевидностью показывают также, что пограничный слой имеет значительное влияние на образование ударных волн поэтому представляется необходимым хотя бы краткое рассмотрение проблемы взаимодействия между пограничным слоем и ударными волнами.  [c.62]

ВЗАИМОДЕЙСТВИЕ МЕЖДУ ПОГРАНИЧНЫМ СЛОЕМ И УДАРНОЙ ВОЛНОЙ  [c.63]

АЭРОДИНАМИЧЕСКОЕ НАГРЕВАНИЕ В ТРЕХМЕРНЫХ ОБЛАСТЯХ ВЗАИМОДЕЙСТВИЯ УДАРНЫХ ВОЛН С ЛАМИНАРНЫМ ПОГРАНИЧНЫМ СЛОЕМ  [c.291]

Треугольное полукрыло с острой передней кромкой при достаточно большом угле отклонения также вызывает отрыв потока от пластины, на которой оно установлено (фиг. 45). В спектре предельных линий тока наблюдается основная линия растекания 1, линия вторичного отрыва (стекания) 2 и линия повторного присоединения (растекания) 3. Максимум теплового потока достигается на линии 1. Зависимость его величины от отношения давления за ударной волной, отходящей от передней кромки полу-крыла, р в к давлению на пластине вне области возмущения от полукрыла Ря при различных углах стреловидности передней кромки и углов атаки полукрыла является универсальной (фиг.46) Отношение давлений,— по-видимому, наиболее важный параметр при взаимодействии скачков уплотнения с пограничным слоем [151.  [c.301]

Боровой В. Я., Рыжкова М. В., Теплообмен на пластине и конусе при трехмерном взаимодействии пограничного слоя с ударной волной, образующейся вблизи цилиндрического препятствия. Труды ЦАГИ, вып. 1374 (1972).  [c.302]

Боровой В. Я., С е в а с т ь я н о в а Е. В., Течение газа и теплообмен в зоне взаимодействия ламинарного пограничного слоя с ударной волной вблизи полукрыла, установленного на пластине, Труды ЦАГИ, вып. 1374 (1972).  [c.302]

Боровой В. Я., Рыжкова М. В., Севастьянова Е. В., Экспериментальное исследование течения газа и теплообмена в зонах пространственного взаимодействия ламинарного пограничного слоя и ударных волн, образующихся вблизи цилиндрического препятствия и полукрыла, IV совещание по тепло- и массообмену, Минск, 1972.  [c.302]

Большое значение имеет изучение поверхностного трения, действия пограничного слоя, взаимодействия его с ударными волнами и их взаимного влияния на отрыв. Очевидно, что хороший сверхзвуковой самолет не должен иметь бапьшого волнового сопротивления, так как поверхностное трение попрежнему будет составлять основную часть сопротивления недопустимы также какие-либо отрывы. Таким образом, крайне необходимы теоретические и экспериментальные исследования ламинарного и турбулентного пограничных слоев при различных числах Рейнольдса для трансзвуковых и сверхзвуковых скоростей.  [c.79]

Делались попытки учесть в методах расчета толщины и углы изгиба профилей, влияние которых мол ет быть весьма существенным при низких частотах [8.95—8.97]. Однако ясно, что не менее важно улучшить теоретическое представление ударных волн и их взаимодействия с пограничным слоем. В работе [8.98] утверлсдается и демонстрируется на практике, что наилучший путь усовершенствования теории флаттера состоит в физическом моделировании явления при экспериментальных исследованиях плоских решеток.  [c.243]

Фундаментальную роль в явлении стационарного пересечения ударных волн с поверхностью обтекаемого тела играет их взаимодействие с пограничным слоем. Свойства этого взаимодействия весьма сложны и их детальное рассмотрение выходит за рамки этой книги. Мы ограничимся здесь лишь некоторыми оби1ими утверждениями ).  [c.585]

Следует подчеркнуть, что рассмотренная нами картина взаимодействия пограничного слоя с набегающим равномерным потоком ограничивалась случаем тела с заостренной передней, частью. Затупление носовой части тела, а также неравномерность внешнего потока (например, при сильно искривленной головной ударной волне) вносят дополнительные изменения в распределении давления. Эти виды взаимодействия рассмотрены в монографии Хейза и Пробстина.  [c.131]

В современной аэродинамике часто рассматриваются летательные аппараты, движущиеся с весьма большими сверхзвуковыми скоростями. При таких скоростях взаимодействие газа с обтекаемой поверхностью приводит к зг ачительному повышению температуры в тех областях потока, где происходит его интенсивное торможение (пограничный слой, критические точки, ударные волны). Это вызывает изменение физико-химических свойств газа (теплоемкостей, вязкости, состава и др-), что, в свою очередь, значительно влияет на величину и распределение напряжений (прежде всего касательных), а также тепловых потоков от разогретого газа к обтекаемой стенке.  [c.10]


В случае сверхзвуковой скорости перед входом в Д. торможение осуществляется в ударных волнах, взаимодействующих между собой и отражающихся от стеиок Д. (пунктир на рис. 2). Давление в потоке, прошедшем через ударную волну, резко увеличивается, и лод воздействием большого положит, градиента давления в местах отражения ударных воли от стенок может происходить отрыв пограничного слоя (штриховка па рис,  [c.692]

В сверхзвуковых течениях нри наличии ударных волн пересечение ударной волной поверхности с вязким пограничным слоем приводит к образованию О. т., существенно влияющего на аэродинамич. характеристики тела и его тепловой режим. Для турбулентного пограничного слоя возникновение О. т. при взаимодействии с ударной волной определяется нск-рым критич. отношением давлений в ударной волне р р , где давление во внеш. потоке перед ударной волной, а Р2 — давление за ной. Установлена эмппрнч. зависимость  [c.516]

Краткое содержание. Гиперзвуковой вязкий поток, обтекающий наклонный клин в условиях теплообмена, исследуется с помощью обобщен -ного интегрального метода Кармана, справедливого для уравнений пограничного слоя сжимаемой жидкости. Введение температурной функции 5 позволяет свести основные уравнения пограничного слоя к двум обыкновенным дифференциальным уравнениям относительно толщины пограничного слоя 8(х) и функции теплоотдачи f x) с параметром S-j, характеризующим интенсивность теплообмена. Обсуждаются решения л х) и f(x) при различных Sq. Числовые примеры наглядно иллюстрируют эффект взаимодействия ударной волны с гиперзвуковым пограничным слоем в условиях как интенсивного, так и малого теплообмена. Показано, что значения локальных коэффициентов поверхностного трения и теплоотдачи зависят в основном от коэффициента вязкости на поверхности тела.  [c.100]

В 1947 г. Фэйдж и Сарджент [9] применили трубку Стантона в исследованиях взаимодействия ударной волны с пограничным слоем. Они провели тарировку трубки вплоть до чисел Маха порядка 0,855.  [c.173]

Руководя экспериментальными и теоретическими исследованиями по взаимодействию ударных волн с пограничным слоем, Г. Г. Черный в докомпьютерную эпоху (1952 г.) в нелинейном приближении решил задачу о взаимодействии косого скачка с текущим у стенки дозвуковым потоком.  [c.12]

На фиг. 14—6 показаны результаты расчета теплообмена для различных областей течения газа. Рассматриваются такие условия, когда на всей расчетной длине пластины для теплообмена существен только один режим взаимодействия ударной волны с пограничным слоем. Из характера зависимостей следует необходимость учета различных режимов, особенно в переходной области (в данном конкретном случае при 10< <./ е<10 ). В этой постановке задачи очевидны принципиальные трудности адекватного описания термогазодинамических явлений, особенно если учесть условность выделения отдельных зон (см. фиг. 14—5).  [c.337]

Механизм взаимодействия пограничного слоя с внешним невязким потоком значительно усложняется в случае тонких, но имеющих затупленную переднюю кромку тел. Как мы уже знаем (гл. VI и VII), в этих случаях при очень больших значениях числа Маха образуются головные ударные волны сложной криволинейной конфигурации. При прохождении через такую волну набегающий на тело однородный изэнтропический поток становится вихревым и неизэнтропическим, причем в условиях, соответствующих представлению о сильном взаимодействии, индуцированные ударной волной завихренность и градиент энтропии в области между головной волной и внешней границей пограничного слоя могут оказаться очень интенсивными.  [c.705]

В режиме со скольжением условия течения и механизм взаимодействия газа с поверхностью существсцко отличается от условий сплошной среды. Утолщение ударной волны и пограничного слоя оказывают влияние на аэродинамику и теплообмен. Однако применение Уравнений Навье—Стокса в целом ряде газодинамических задач, относящихся к разреженному газу, дает результаты, достаточно хорошо совпадающие с экспериментальными данными. Поэтому практический интерес приобретает анализ возможностей распространения уравнений пограничного слоя с граничными условиями, учитывающими новый характер взаимодействия, на область течений со скольжением.  [c.159]

В этом режиме сильного взаимодействия видно, что пограничный слой занимает примерно четыре пятых расстояния от тела до ударной волны. [Horstman, Киззоу, 1968]  [c.170]

Важность явления взаимодействия между пограничным слоем и трансзвуковым потоком и, в частности, образования ударных волн была признана почти одновременно научными сотрудниками национального совещательного комитета по авиации (NA A) и Калифорнийского технологического института, а также Я. Акке-ретом в Цюрихе. Исследования в этой области еще весьма далеки от окончания.  [c.64]

Проблема взаимодействия ударных волн н пограничного слоя, которая интенсивно изучалась, в частности, в течение нескольких последних лет, как заметил Карман, попрежнему далека от реше-ния. Было показано, что число Рейнольдса имеет большое влияние на характер скачка и связанное с ним возмущение пограничного слоя. Однако число Рейнольдса не является единственным критерием. Линдзи (Lindsey) показал, чю при одном н том же числе Рейнольдса лямбдаобразные и прямые скачки зависят от кривизны поверхности.  [c.77]

На рис. 55, который относится к немного большему значению числа Маха, мы видим завершение отрыва. Но аналогии с другим случаем отрыва потока мы называем это явление волновым срывом потока. Рис. 55 относится к случаю, где пограничный слой ламинарный. Если пограничный слой турбулентный, то оп оказывает до некоторой степени большее сопротивление отрыву. Это взаимосвязанное явление известно как взаимодействие ударной волны и иограпичиого слоя. Увеличение давления, вызванное ударной волной, может вызвать отрыв пограничного слоя, который в свою очередь влияет па образование ударной волны. Впервые эту задачу исследовали Акерет, Фельдман и Ротт [16] в Цюрихе и Липман [17] в Калифорнийском технологическом институте.  [c.132]

Обширный обзор и правильное представление об отрыве потока, вызванном скачком уплотнения, а также о его влиянии на крылья и способах его предотвращения приведены в работе Пирси [2]. Холдер и Гэдд [3] исследовали взаимодействие ударной волны с пограничным слоем и связь с донным давлением. Фрэзер и др. [4] экспериментально исследовали отрыв потока в соплах при сверхзвуковых скоростях. Краткий обзор, посвященный отрыву газа с акцентированием внимания на гиперзвуковом диапазоне скоростей, был сделан Кауфл1аном и др. [5]. Так как практические аспекты проблемы отрыва выходят за рамки этой главы, заинтересованный читатель может обратиться к цитированной литературе.  [c.231]

В установившемся потоке эта вторая волна вызывает отрыв потока на игле. На подлинной фотографии можно видеть слабую коническую ударную волну, вызванную отрывом и начинающуюся почти на половине расстояния между основанием иглы и первой ударной волной. На приведенной репродукции она почти незаметна. Слабая линия, воспринимаемая как продолжение прямого скачка и на игле почти нормальная к направлению потока (фиг. 32), связана с эффектом послесвечения источника света и не заслуживает внимания. Фотография на фиг. 31 соответствует началу перемещения точки отрыва вверх по потоку. По истечении 50 МКС точка отрыва достигает конца иглы (фиг. 32). В этой фазе размеры области отрыва довольно велики, и на конце иглы формируется сильная, почти прямая ударная волна, распространяющаяся по нормали к иглв приблизительно на расстояние двух диаметров иглы от ее конца. На ббльших расстояниях наблюдается слабая ударная волна, наклоненная к потоку под углом, лишь немного превышаюнщм угол Маха. Головная ударная волна перед телом не проходит через область отрыва, а расщепляется на несколько ветвей на расстоянии около двух диаметров тела от оси. Это расщепление ударной волны, по-видимому, каким-то образом обусловлено взаимодействием с ударной волной, расположенной выше по потоку. Пограничный слой на тупом теле  [c.243]


Однако формы профиля в начальном оторвавшемся вязком слое очень важны для определения величины донного давления при ламинарном течении [51, 52], следовательно, для усовершенствования метода Чепмена требуется рассмотреть начальный пограничный слой. Несовершенство таких методов, как методы Крокко — Лиза [10] и Корста [30], заключается главным образом в допущении, что возрастание давления, необходимое для замыкания области отрыва, можно приравнять к разности между донным давлением и конечным восстановленным давлением на значительном удалении вниз по потоку. Его следует приравнивать либо к давлению в окружающем невозмущенном потоке, либо к несколько меньшему давлению, чтобы учесть потери при прохождении внешнего потока через замыкающий скачок. Это означает, что точка замыкания области отрыва лежит в области максимального давления, однако, согласно экспериментальным исследованиям сверхзвукового донного течения [10. 25, 34] и взаимодействия ударной волны с пограничным слоем [26. 27. 29], точка нулевого вязкого напряжения, т. е. точка замыкания области отрыва, расположена ближе, чем точка максимального давления. При дозвуковых скоростях замыкание области отрыва происходит в точке, где местное статическое давление превосходит давление во внешнем потоке. Исследование донного давления требует введения дополнительного параметра, а именно отношения приращения давления при замыкании области отрыва к разности между статическим давлением во внешнем потоке и донным давлением. Если обратиться, в частности, к теории Корста 130] (хотя его метод расчета подтверждается наблюдениями и в Пришвине по-  [c.71]


Смотреть страницы где упоминается термин Ударной волны пограничного слоя взаимодействие : [c.70]    [c.396]    [c.328]    [c.154]    [c.220]    [c.245]    [c.270]    [c.301]    [c.206]    [c.517]   
Аэродинамика (2002) -- [ c.130 , c.131 ]



ПОИСК



Аэродинамическое нагревание в трехмерных областях взаимодействия ударных волн с ламинарным пограничным слоем, Майкапар

ВЗАИМОДЕЙСТВИЯ УДАРНЫХ ВОЛН

Взаимодействие между пограничным слоем и ударной волной

Взаимодействующие волны

Волны в слое

Волны ударные

Задача о взаимодействии ударной волны с пограничным слоем

Остапенко (М о с к в а). О закономерностях несвободного взаимодействия ударных волн с пограничным слоем на пластине со скольжением

Остапенко (Москва). Структура течения в области отрыва при взаимодействии ударных волн с пограничным слоем на пластине со скольжением

Пограничный взаимодействие с ударной волной

Ударной волны пограничного слоя

Ударные волны слоем



© 2025 Mash-xxl.info Реклама на сайте