Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проводимость электрического поля

Электрический ток передается в металлах движением электронов, образующих электронный газ. При отсутствии внешнего электрического поля электроны движутся во всех направлениях, и это движение электронов проводимости носит неупорядоченный характер. Под влиянием же разности потенциалов, приложенной к металлу извне, появляется направленное движение электронов. Движение электронов и осуществляет передачу электричества. Чем слабее электроны связаны с атомами, тем больше будет электропроводность металла.  [c.10]


Будем предполагать, что Reg -> 0. Это означает, что течение жидкости не изменяет пространственного распределения электрического поля Е. Жидкость считаем ньютоновской с постоянными физико-химическими свойствами. Предполагаем, что присутствие ПАВ не влияет на величину межфазной электрической проводимости.  [c.78]

Электроны проводимости свободно перемещаются по всему объему металла, но не могут выходить за его пределы. Этому препятствует электрическое поле, действующее в узкой зоне, которую называют поверхностным потенциальным барьером или просто барьером.  [c.61]

Электрическая проводимость электролитов — их главное физическое свойство. Она определяется числом носителей заряда — ионов, зарядом их и скоростью дрейфа в направлении силовых линий электрического поля  [c.289]

Здесь к — показатель адиабаты Ь — проводимость среды, отнесенная к скорости света в пустоте с а = 1/41г I — время, умноженное на с р — давление, деленное на с т — плотность газа 8 — энтропийная функция, деленная на с V — вектор скорости, отнесенный к с Я — вектор напряженности магнитного поля, отнесенный к с Я — вектор напряженности электрического поля, отнесенный к с.  [c.29]

Вентильный фотоэффект. Вентильный фотоэффект — это явление возникновения э. д. с. при освещении контакта двух разных полупроводников или полупроводника металла в отсутствие внешнего электрического поля. На этом явлении основаны вентильные фотоэлементы, обладающие тем преимуществом перед фотосопротивлениями и внешними фотоэлементами, что они могут служить индикаторами лучевой энергии, не требующими внешнего питания. Но главная особенность вентильных фотоэлементов состоит в том, что они открывают путь для прямого превращения солнечной энергии в электрическую. В начале нашего века существовали фотоэлементы, работающие на контактах полупроводников и металлов. Однако в дальнейшем было показано, что наиболее эффективными являются фотоэлементы, основанные на использовании контакта двух полупроводников с р- и -типами проводимости, т. е. на так называемом р- -переходе. При освещении перехода в р-области образуются электронно-дырочные пары. Электроны и дырки диффундируют к р- -переходу. Электроны под действием контактного поля будут переходить в -область. Дырки же преодолевать барьер не могут и остаются в р-области. В результате р-область заряжается положительно, -область — отрицательно и в р-я-переходе возникает дополнительная разность потенциалов. Ее и называют фотоэлектродвижущей силой (фото-э. д. с.).  [c.346]


Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, со- давая электронный ток проводимости.  [c.154]

Как известно, возникновение в каком-либо месте среды переменного электрического тока сопровождается появлением в окружающем пространстве переменного магнитного поля (электромагнетизм) это последнее ведет к образованию переменного электрического поля (электромагнитная индукция), обусловливающего переменные токи смещения в окружающем пространстве. Токи смещения обусловливают возникновение магнитного поля, так же как обычные токи проводимости в проводнике создают вокруг себя магнитное поле. Таким образом, все новые и новые области пространства становятся областью действия электромагнитных полей возникшее где-либо электрическое колебание не остается локализованным, а постепенно захватывает все новые и новые участки пространства, распространяясь в виде электромагнитной волны.  [c.27]

Эффект Зинера. Его наблюдают в очень сильных полях (больше 10 В/м). Увеличение концентрации носителей в этом случае осуществляется за счет туннельного перехода электронов из валентной зоны в зону проводимости. У полупроводника, помещенного в электрическом поле, наблюдается наклон энергетических зон, тем больший, чем выше 17  [c.259]

При сильном электрон-фононном взаимодействии область искажений может быть соизмерима с параметром а. Этот случай соответствует образованию полярона малого радиуса. Из-за сильного взаимодействия электрона с решеткой ПМР оказывается очень стабильным. За счет тепловых флуктуаций ПМР перемещается в кристалле прыжками , из одного полол<ения в другое. Если к диэлектрику прилол ено электрическое поле, то прыжки ПМР становятся направленными, т. е. возникает прыжковая проводимость. Подвижность ПМР чрезвычайно мала. Ее зависимость от температуры описывается выражением  [c.274]

Если к диэлектрику приложены слабые электрические поля (в области выполнения закона Ома), то они не могут изменить ни концентрации, ни подвижности носителей заряда. Значения величин п и 1, таким образом, остаются весьма низкими, и вклад электронной проводимости незначителен. В сильных электрических полях ситуация резко меняется. Энергии электрического поля. может быть достаточно для освобождения полем электронов (или дырок) из связанного состояния. Вследствие этого возрастает подвижность носителей заряда. Кроме того, из-за ударной ионизации резко увеличивается и концентрация освобожденных электронов в зоне проводимости (или дырок в валентной зоне). Все это приводит к росту электронной проводимости.  [c.274]

В некоторых диэлектриках доминирующей является ионная проводимость, при которой ток переносится положительными (катионы) или отрицательными (анионы) ионами. При этом в постоянном электрическом поле осуществляется не только перенос заряда, но и перенос вещества. Анионы движутся к аноду, катионы — к катоду. Поскольку концентрация носителей заряда в объеме диэлектрика в этом случае постепенно уменьшается, значение ионного тока зависит от времени.  [c.274]

Если к диэлектрику приложить электрическое поле, то появится некоторое количество ионов, преодолевающих барьеры преиму-щественно в направлении поля. Они и обусловливают ионную проводимость. Расчеты показывают, что в этом случае  [c.274]

Потерями называют ту часть электрической энергии, которая превращается в диэлектрике в теплоту. Поскольку диэлектрики обладают некоторой проводимостью (хотя и очень незначительной), в них выделяется джоулева теплота даже в постоянном электрическом поле. Однако под действием переменного электрического поля диэлектрики обычно нагреваются значительно сильнее, чем  [c.301]

Собственное поглощение. Оно связано с переходами электронов из валентной зоны в зону проводимости. Выше уже отмечалось, что в идеальном полупроводнике при 7 = 0К валентная зона заполнена электронами полностью, так что переходы электронов под действием возбуждения в состояние с большей энергией в этой же зоне невозможны. Единственно возможным процессом здесь является поглощение фотона с энергией, достаточной для переброса электронов через запрещенную зону. В результате этого в зоне проводимости появляется свободный электрон, а в валентной зоне—дырка. Если к кристаллу приложить электрическое поле, то образовавшиеся в результате поглощения света свободные носители заряда приходят в движение, т. е. возникает фотопроводимость. Таким образом, для фотонов с энергией hvдлин волн (т. е. больших hv) имеет место сплошной спектр интенсивного поглощения, ограниченный более или менее крутым краем поглощения при hvинфракрасной области спектра. В зависимости от структуры энергетических зон межзонное поглощение может быть связано с прямыми или непрямыми оптическими переходами.  [c.307]


Проводимость электролита G — отношение электролитической плотности тока к напряженности электрического поля  [c.217]

Эти рассуждения касаются кристаллов с решеткой, не имеющей испорченных или особых мест. Однако в решетке реальных кристаллофосфоров всегда имеется большое число дефектов. Их возникновение может быть вызвано различными причинами введением посторонних примесей, неправильностями роста кристалла, наложением на него внешних напряжений и т. д. Особое значение имеют ионы активатора, так как они входят в состав центров свечения. Как и у ионов основного вещества решетки, у ионов активаторов имеется невозбужденный и возбужденный уровни, причем и те и другие уровни сильно уширяются под влиянием электрического поля окружающих ионов решетки. Как правило, невозбужденный уровень активатора лежит несколько выше валентной зоны решетки, а возбужденные уровни — ниже дна зоны проводимости.  [c.184]

Подвижность носителей и проводимость. Дрейфовая подвижность Цдр = Удр/ , где идр — дрейфовая скорость носителей в электрическом поле Е. Определяется прямыми опытами по времени распространения инжектируемого импульса неосновных носителей в образце. Удельная проводимость а связана с дрейфовой подвижностью Цр электронов и дырок и их концентрацией пир соотношением а = е(пр.,г + рп ). Измерение эффекта Холла позволяет определить холловскую подвижность р,н=1 а1, где R — коэффициент Холла.  [c.454]

Диэлектриками называют вещества, основным электрическим свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Такое поле может длительно сохраняться лишь в средах, плохо проводящих электрический ток. Электропроводность — способность проводить электрический ток—обусловлена наличием в веществе свободных носителей заряда—электрически заряженных частиц, которые под действием внешнего электрического поля направленно перемещаются сквозь толщу материала, создавая ток проводимости (положительно заряженные носители движутся по направлению вектора напряженности электрического поля Е, отрицательно заряженные— против). Параметром вещества, количественно определяющим его электропроводность, является удельная электрическая проводимость у, См/м, а также удельное объемное электрическое сопротивление p = l/Y, Ом-м, причем  [c.543]

Удельные потери диэлектрика в постоянном электрическом поле определяются только током проводимости  [c.544]

Пусть теперь зона проводимости частично заполнена (полностью она не может быть заполненной, потому что в этом случае, по определению, она была бы валентной зоной). Под влиянием внешнего электрического поля электроны зоны проводимости могут переходить на другие уровни той же зоны, так как расстояние между различными уровнями одной и той же зоны мало. При этих переходах образуется преимущественное направление ориентации импульсов электронов, что соответствует появлению электрического тока. Следовательно, соответствующий кристалл - проводник. В терминах зонной теории можно сказать, что  [c.340]

Тепловое движение атомов проводника препятствует ориентирующему действию внешнего электрического поля. Следовательно, при прочих равных условиях сила электрического тока должна уменьшаться с увеличением температуры проводника. Это означает, что электропроводимость проводника с ростом температуры уменьшается, что характерно для проводников. Электропроводимость идеальных диэлектриков в не очень сильных полях должна быть очень близка к нулю. Можно сказать, что что электропроводимость диэлектриков равна практически нулю, помня при этом условность такого утверждения. В действительности их проводимость порядка 10 — 10 ° См/м.  [c.341]

Механизм, который предложили Кабрера и Мотт (J949 г.), исходит и из существования на металле образовавшейся в процессе хемосорбции кислорода пленки, в которой ионы и электроны движутся независимо друг от друга. При низких температурах диффузия ионов через пленку затруднена, в то время как электроны могут проходить через тонкий еще слой окисла либо благодаря термоионной эмиссии, либо, что более вероятно, вследствие туннельного эффекта (квантово-механического процесса, при котором для электронов с максимальной энергией, меньшей, чем это требуется для преодоления барьера, все же характерна конечная вероятность того, что они преодолеют этот барьер, т. е. пленку), обусловливающего высокую проводимость окисной пленки при низких температурах. При этом на поверхности раздела металл— окисел образуются катионы, и на поверхности раздела окисел— газ—анионы кислорода (или другого окислителя). Таким образом, внутри окисной пленки создается сильное электрическое поле, благодаря которому главным образом ионы и проникают через пленку, скорость роста которой определяется более медленным, т. е. более заторможенным, процессом.  [c.48]

Так как коррозионные процессы в большинстве случаев протекают по электрохимическому механизму, то большое значение для этих процессов имеют свойства растворов электролитов. Электролитами называются проводники второго рода, электропроводность которых обусловлена передвижением ионов в электрическом поле (ионная проводимость) положительно заряженных катионов и отрицательно заряженных анионов. Проводниками второго рода обычно являются водные растворы солей, кислот и оснований, а также эти вещества в расплавленном состоянии. Электролитами могут быть и некоторые неводные растворы. Наряду с сильными электролитами, полностью диссоциирующими в растворах на ионы, некоторые вещества, например органические кислоты, лишь частично распадаются на ионы их принято называть слабыми электролитами.  [c.11]

Рассмотрим движение смеси, состоящей из несущей жидкости и диспергированных в ней пузырьков газа. Будем предполагать, что при наличии электрического поля жидкость и газ поляризуются по разным законам, а проводимости обеих фаз пренебрежимо малы и диэлектрические проницаемости фаз постоянны, т. е. не зависят от температур фаз и величины электрического поля. Диэлектрическая проницаемость смеси 6 будет в этом случае зависеть только от объемного газосодержання а.  [c.229]


Фотопроводимость. Внутренний фотоэффект, или фотопроводимость, — это явление возникновения внутри полупроводника избыточных носителей тока под действием освещения. В простейшем случае собственного полупроводника излучение возбуждает валентные электроны в зоне проводимости, где они находятся в свободном состоянии и могут участвовать в процессе переноса заряда. Вклад в прО Зодимость дают также возникаюш,ие в валентной зоне дырки. В примесном полупроводнике -типа кроме собственного фотоэффекта возможно еще возбуждение электронов из связанных состояний на донорных центрах в зону проводимости. Аналогичным образом в полупроводниках р-типа возможно возбуждение электронов из валентной зоны на акцепторные уровни, создавая тем самым подвижные дырки. Характерно, что в обоих случаях" примесной фотопроводимости в кристалле генерируются свободные носители только одного знака. Так же, как и внешний фотоэффект, фотопроводимость проявляется в однородном материале в присутствии внешнего электрического поля.  [c.346]

Криосар — полупроводниковый криогенный прибор, работающий при температуре в несколько градусов Кельвина бывает двух видов с отрицательным дифференциальным сопротивлением и с резким изменением проводимости под воздействием электрического поля применяется в запоминающих устройствах недостаток — отсутствие вентильных свойств [9].  [c.145]

V — относительный сдвиг е —заряд электрона ij — истинная деформация Е — энергия, напряженность электрического поля, модуль Юнга й — напряженность электрического поля Са, Ей — энергии ионизации ак цептора, донора Ес — энергия края зоны проводимости Eg — ширина запрещенной зоны  [c.377]

Эти результаты Пайерлс использовал при исследовании электропроводности при низких температурах. Электрическое поле стремится увеличить J с постоянной скоростью, и поскольку электрон-фононные взаимодействия сохраняют J, равновесие может быть достигнуто только за счет взаимодействия фононов между собой, при котором не сохраняется q, т. е. за счет того же взаимодействия, которое обусловливает тепловое сопротивление (п. 7). Таким образом, в стационарном состоянии Ь /= О, а " gp (время релаксации электронов, обусловленное взаимодействием с фононами), согласно (21.4), возрастает, превышая значение, вычисленное по теории Блоха. Если ад — проводимость, рассчитанная по теории Блоха в предположенип = 0, то, согласно (21.4), а равно  [c.285]

Экспериментальные доказательства необходимости упомянутой связи не очень многочисленны, но весьма убедительны. Во-первых, это—изменение глубины проникновения магнитного поля с концентрацией примесей индия (последняя изменяется от нуля до 3% см. гл. VIII). Наблюдалось уменьшение глубины проникновения почти в 2 раза, хотя в критической температуре не было заметно почти никакого изменения. По мнению Пиннарда, изменение глубины проникновения поля означает уменьшение длины свободного пробега электронов благодаря наличию примесей атомов индия и соответствующее уменьшение длины когерентности. Во-вторых, это—изменение глубины проникновения поля в монокристалле олова в зависимости от его ориентации ). Глубина проникновения имеет максимум, когда угол 6 между осью кристалла и осью четвертого порядка равен 60° и уменьшается для всех других углов (см. гл. VIИ). Это изменение не может быть объяснено предположением о тензорном характере параметра Л в уравнении Лондона, поскольку такое предполоягение приводило бы к монотонной зависимости от величины угла. Пиппард наблюдал соответствующее изменение в высокочастотном сопротивлении нормального олова, что опять не может быть объяснено простым учетом тензорного характера проводимости для объяснения приходится привлекать теорию аномального скин-эффекта. В последнем случае средняя длина свободного пробега электрона больше толщины скин-слоя, так что электрическое поле, действующее на электрон, существенно изменяется на протяжении длины свободного пробега. В-третьих, это—зависимость глубины проникновения поля от параметров металла данная зависимость будет рассмотрена позднее с позиции модифицированной теории Пиппарда (см. п. 26).  [c.705]

Эффект Зпнера — туннельный переход электронов из валентной зоны в зону проводимости в сильном внешнем электрическом поле.  [c.289]

Чистый совершенный полупроводник (например, 51, дл которого АЕ 1,1 эВ) вблиаи абсолютного нуля ведет себя как изолятор. С повышением температуры наступает такой момент, когда энергии теплового возбуждения достаточна для массового переброса электронов из валентной зоны в зону проводимости. В результате такого перехода в зоне проводимости появятся электроны, а в валентной зоне — свободные от электронов энергетические уровни, которые, можно в разумных границах ассоциировать с положительными зарядами (дырками). В отсутствие внешнего электрического поля электроны и дырки совершают хаотическое движение. При включении внешнего электрического поля осуществляется направленное движение носителей заряда (дрейф) причем электроны двигаются преимущественно против поля,, а дырки —по направлению поля.  [c.84]

В области низких температур электроны и дырки, локализованные на диекретных уровнях, м огут перемещаться по кристаллу лишь путем прыжков (перескоков) с одного уровня на другой. Для преодоления потенциального барьера, разделяющего примесные атомы, требуется энергия активации. В случае малой концентрации примесных атомов расстояния между ними получаются большими, а поэтому вероятность перескока оказывается небольшой и значения подвижности (скорость дрейфа носителей заряда в электрическом поле с напряженностью 100 В/м) также очень малы. Прыжковую проводимость можно обнаружить лишь при настолько низких температурах, что концентрация свободных носителей заряда становится совсем небольшой (но при Т = 0 тепловая активация невозможна). Представление об изолированных атомах примеси оправдано лишь в том случае, если не перекрываются ни их силовые поля, ни волновые функции электронов, локализованных на этих уровнях.  [c.120]

Подвижность заряженных частиц К определяется соотношением K=w/E, где W—дрейфовая скорость заряженных частиц в электрическом поле напряженностью Е. При высокой напряженности электрического поля Е, когда функция распределения заряженных частиц отличается от максвелловской и их температура не имеет прямого физического смысла, соотношение (20.3) справедливо приближенно, с погрешностью 10—15%, если при этом под температурой заряженных частиц понимать величму, связанную с их средней энергией ё соотношением 8 = кТ. В плазме, основной механизм проводимости которой связан с движением электронов под действием электрического поля, подвижность электронов Ке связана с проводимостью плазмы а соотношением  [c.430]

Газы в слабых электрических полях и при не очень высоких температурах обладают весьма малой удельной проводимостью. При этих условиях весьма немногочисленные свободные носители заряда — электроны и ионы — образуются лишь под действием внешних ионизаторов невысокой интенсивности—космических лучей и естественного ионизирующего излучения. Поэтому при указанных условиях газы являются отличными диэлектриками с удельным сопротивлением порядка 10 Ом-м, практически не имеющим диэлектрических потерь (tg б порядка 10 ). Повышение электропроводности газов происходит при высоких температурах, начиная с 10 — Ю К, когда энергия теплового движения частиц газа велика и при столкновении они могут ионизовать друг друга (происходит термическая ионизация). Термоионизация воздуха нарастает, начиная с температуры 8000 К. При 20 ООО К воздух ионизуется практически полностью  [c.545]


Пусть зона проводимости не содержит ни одного электрона. Внешнее электрическое поле действует на элек-  [c.339]


Смотреть страницы где упоминается термин Проводимость электрического поля : [c.188]    [c.155]    [c.173]    [c.21]    [c.255]    [c.273]    [c.174]    [c.198]    [c.132]    [c.367]    [c.543]    [c.737]    [c.340]    [c.342]   
Электротехнические материалы (1976) -- [ c.0 ]

Электротехнические материалы Издание 3 (1976) -- [ c.273 ]



ПОИСК



Проводимость

Проводимость электрическая

Электрическое поле



© 2025 Mash-xxl.info Реклама на сайте