Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Слой пограничный молекулярный

Следует отметить, что универсальный закон распределения скорости выведен в предположении, что в основной части турбулентного пограничного слоя коэффициент молекулярной вязкости мал по сравнению с турбулентным коэффициентом вязкости. Такое допущение оправдано лишь при очень больших числах Рейнольдса, поэтому универсальный закон распределения скорости следует рассматривать как асимптотический закон для очень больших чисел Рейнольдса. Опыты, проведенные при  [c.321]


В ламинарном подслое процессы переноса определяются коэффициентами молекулярного переноса v, а и D. В остальной части турбулентного пограничного слоя коэффициенты молекулярного переноса пренебрежимо малы по сравнению с соответствующими коэффициентами турбулентного, или молярного, переноса.  [c.328]

Ясно, что эту задачу можно рассматривать как предельный случай плоского течения Куэтта, когда одна из пластин отодвигается на бесконечность. Более общо, задачу Крамера можно интерпретировать как задачу связи через пограничный молекулярный слой с внешним потоком ( 5 гл. 5). В этом случае бесконечность означает область, где справедливо решение Гильберта и градиент скорости на бесконечности мояшо считать постоянным, потому что он слабо меняется на расстоянии порядка длины среднего свободного пробега (это выполняется с точностью до членов порядка e ).  [c.180]

Перенос тепла и вещества с поверхности материала в окружающую среду происходит в основном молекулярным путем (теплопроводность и диффузия). Но наличие интенсивного эффузионного переноса пара в зоне испарения, усиливающегося явлением теплового скольжения, создает градиент давления в зоне. Это изменяет механизм переноса пара в пограничном слое. Пар, выходя с боль-  [c.515]

Видно, что плотность потока целевого компонента j не зависит от уг.ла 9, т. е. одинакова во всех точках поверхности пузырька. Кроме того, выражение (6. 3. 41) не содержит зависимости от скорости набегающего потока жидкости и. Эти факты свидетельствуют о том, что в начальные моменты времени массоперенос в диффузионном пограничном слое в основном осуществляется за счет механизма молекулярной диффузии. Величина полного потока вещества J при малых временах определяется при помощи следующей формулы  [c.253]

Как и ранее, используя выводы теории пограничного слоя, полагаем, что поперечный молекулярный перенос компонента в струе больше продольного, так что последним можно пренебречь. Тогда уравнение (2.1.27) примет вид  [c.56]

Вторым членом соотношения (12), учитывающим температурный крип, чаще всего можно пренебречь, так как при высоких продольных градиентах температуры и очень больших разрежениях, когда этот член особенно существен, обычно реализуется свободно-молекулярное течение газа без гидродинамического пограничного слоя. Однако в некоторых специальных случаях (например, обтекание головной части ракеты во время входа ее в сравнительно плотные слои атмосферы) условие (12) используется в полном виде.  [c.137]


Интенсивность теплоотдачи существенно зависит от природы газа. Из формул (12.23) и (12.26) видно, что уменьшение молекулярного веса охладителя при прочих равных условиях ведет к уменьшению коэффициента теплоотдачи. Это положение иллюстрируется графиками (рис. 12.9), построенными по результатам опытного исследования теплоотдачи на пластине при турбулентном пограничном слое. Линия / соответствует вдуванию гелия в воздух, линия 2— воздуха в воздух. Высокая эффективность использования легких газов для уменьшения интенсивности теплообмена обусловлена, главным образом, большой величиной их теплоемкости.  [c.421]

Выражение (11.29) было получено из анализа уравнений движения вязкой жидкости в предположении, что в потоке преобладают силы молекулярной вязкости, а параметры движения, в частности скорость жидкости, есть непрерывные функции координат. Оба эти условия выполняются при течении жидкости в вязком подслое, что позволяет применить выражение (11.29) к вязкому подслою (при этом коэффициенты, в частности А , будут иметь вообще иное по сравнению с ламинарным пограничным слоем значение).  [c.407]

Т — температура х, у — прямоугольные координаты т и д — касательное напряжение трения и плотность теплового потока в пограничном слое. Для турбулентного потока величины д и х являются суммой молекулярных и турбулентных значений этих параметров.  [c.28]

В непосредственной близости к стенке существует вязкий подслой, в котором молекулярная вязкость существенно превосходит турбулентную и потому > а . Толщина вязкого подслоя составляет 0,001. .. 0,01 толщины всего турбулентного слоя. Далее следует зона логарифмического профиля, которая вместе с вязким подслоем и переходной областью образует пристенную область. В этой области, составляющей около 20 % толщины пограничного слоя, накапливается главная часть его пульсационной энергии. Это означает, что в пристенном пограничном слое турбулентность генерируется главным образом вблизи стенки в области гораздо более узкой, чем вся толщина пограничного слоя. Закономерности, описывающие течение в пристеночной области, часто называют законом стенки .  [c.367]

Рейнольдса в пограничном слое происходит перестройка течения, вызванная увеличением полной вязкости по сравнению с исходной молекулярной. Вычисленное изменение полной безразмерной вязкости (ij/ x = ф в пограничном слое в переходной области показано на рис. 7.11. В случае ламинарного режима (малые числа Re ) при сделанных предположениях вязкость постоянна в пограничном слое (ф = 1), с увеличением числа Re на графике функции ф возникает максимум, который достигает больших значений при турбулентном режиме течения. Существенной перестройке в переходной области подвергаются также профили скорости, результаты расчетов показаны на рис. 7.12.  [c.263]

Рассмотрим интегральный метод решения уравнений турбулентного пограничного слоя. Течение в пограничном слое условно можно разделить на ламинарный подслой и турбулентное ядро. В ламинарном подслое течение определяется молекулярным переносом, в турбулентном ядре — молярным. Ламинарный подслой моделируем течением между параллельными, в общем случае, проницаемыми плоскостями (течением Куэтта). Примеры решения уравнений, описывающих течение Куэтта многокомпонентного газа, приведены в 8.1. В турбулентном ядре решение определяется приближенно с использованием интегральных соотношений (8.51). .. (8.53). При турбулентном течении вдоль непроницаемой пластины обычно применяется универсальный степенной профиль скорости  [c.286]

Почему при гиперзвуковых скоростях обтекания процесс теплопередачи в пограничном слое отличается от процесса чисто молекулярной теплопроводности, рассматриваемой обычной газодинамикой Укажите возможные предельные случаи теплопередачи в диссоциированном пограничном слое.  [c.673]

Реальное течение в диссоциированном пограничном слое характеризуется наличием градиента концентрации атомов и молекул и неравновесностью химических реакций. В этом случае процесс теплопередачи в пограничном слое может существенно отличаться от процесса чисто молекулярной теплопроводности. Наряду с молеку-  [c.702]


Теоретические понятия и определения аэродинамики, рассмотренные выше, основаны на гипотезе сплошности газовой среды. Однако с увеличением высоты полета в связи с уменьшением плотности воздуха возрастает длина свободного пробега молекул. Предметом аэродинамики разреженной среды и является исследование течений при значительных длинах свободного пробега, соизмеримых, в частности, с толщиной пограничного слоя. Для этого режима течения уже неприменимы газодинамические соотношения сплошной среды и необходимо пользоваться кинетической теорией, исследующей движение газа с помощью молекулярной механики. Важнейшие выводы этой теории и изложенные в настоящей главе методы аэродинамического расчета основаны на дискретной схеме строения газа. В соответствии с этой схемой рассматриваются режимы свободномолекулярного потока и течения со скольжением, соответствующие зависимости для расчета давления, напряжения трения и энергии падающих и отраженных частиц. При формулировке вопросов и  [c.710]

Если параметр вдува (д Г)дд зафиксировать, то толщина пограничного слоя будет зависеть только от молекулярного веса вдуваемого газа. Введение параметра (д Г)ад(р,й/р, ст)° позволило получить для толщины пограничного слоя общую зависимость при вдуве различных газов (рис. 7.3.8).  [c.465]

Зависимость (7.4.6) справедлива для диапазона чисел Рсж= 10 - 10 , отношения молекулярных весов основного потока и вдуваемого газа А5/р.вд = = 1 ч- 14,5, концентрации вдуваемого вещества на стенке Сст< 0,5 и при условии отсутствия химических реакций в пограничном слое.  [c.469]

Заметим, что иногда рассматривают также промежуточный, так называемый буферный участок, в котором коэффициенты молекулярного и молярного переносов одного и того же порядка. Этот участок расположен между ламинарным подслоем и турбулентной частью пограничного слоя.  [c.328]

Из (7.65) следует, что полный удельный тепловой поток q через турбулентный пограничный слой можно представить в виде суммы тепловых потоков, возникающих в результате действия молекулярной теплопроводности в пограничном слое q и турбулентной qt/-  [c.131]

Из всего сказанного следует, что исследование теплоотдачи в жидких металлах имеет не только теоретическое, но и большое практическое значение. С точки зрения теории жидкие металлы интересны как жидкости с очень малым числом Прандтля Рг< 1. В таких жидкостях молекулярный перенос теплоты происходит значительно интенсивнее, чем молекулярный перенос количества движения тепловой пограничный слой толще динамического.  [c.197]

Внутри пограничного слоя изменение плотности, имп ль-са и энергии происходит как вследствие конвекции и химических процессов, так и вследствие молекулярных процессов переноса, т. е. диффузии, теплопроводности. Для решения задачи о течении внутри пограничного слоя необходимо выставлять граничные условия на внешней границе пограничного слоя — их получают обычно решением задачи о внешнем невязком обтекании тела.  [c.356]

В области теплового пограничного слоя конвективный перенос теплоты и молекулярный перенос (теплопроводность) имеют одинаковый порядок [см. формулу (14.42 ), в которой член (дж/ о) можно отбросить]  [c.345]

Как уже указывалось, турбулентный пограничный слой можно разделить на две области вязкий подслой и область развитой турбулентности. При более тщательном анализе между ними выделяют буферный слой с переходными характеристиками. В вязком подслое преобладает молекулярная вязкость р] р,т, или v Vт, и молекулярная теплопроводность или аЗ>ат. В бу-  [c.361]

Таким образом, пограничный слой можно рассматривать как некоторое третье тело, состоящее из материала, находящегося в состоянии пластического течения. Структура его сложна и непостоянна во времени. Стационарное состояние пограничного слоя представляется как термодинамическое равновесие процессов разрушения и восстановления атомно-молекулярных связей частиц диспергированной среды, сопровождаемое изменением массы (вынос из зон контакта диспергируемого материала) и рассеянием энергии.  [c.87]

Несмотря на то что пограничный слой остается тонким (а измерение скоростей показывает, что толщина его порой составляет несколько молекулярных слоев жидкости), он играет большую роль в процессах конвективного теплообмена.  [c.168]

Вели система состоит из жидкой и газообразной фаз (процесс испарения), то у поверхности раздела фаз образуется диффузионный пограничный слой, представляющий собой область резкого изменения концентрации переносимого вещества. По мере приближения к поверхности раздела фаз конвективные токи вещества затухают и непосредственно вблизи поверхности вещество переносится только путем молекулярной диффузии.  [c.224]

В условиях движения среды, когда образуется динамический пограничный слой и при разности концентраций на внутренней его границе и вне его, можно выделить диффузионный пограничный слой (аналогично тепловому пограничному слою). Толщина пограничного слоя зависит от скорости газов и при скорости, например, 1 лг/сек составляет бд==> = 0,05 мм. Можно положить, что массоперенос через диффузионный пограничный слой в направлении, нормальном к стенке, происходит в пограничном слое только путем молекулярной диффузии (по закону Фика). Подобно тому совместную передачу тепла в движущейся однокомпонентной среде теплопроводностью и конвекцией называют конвективным теплообменом, совместный молекулярный и макроскопический перенос массы называют конвективным массообменом.  [c.178]


Для турбулентной части пограничного слоя молекулярный перенос теплоты и количества движения можно не учитывать. Будем полагать также, что здесь Ргт=1 (es=eg). В этом случае распределение осред-ненных скорости и температуры будут идентичны. Тогда из уравнений (7-15) и (7-16) следует, что в турбулентной части пограничного слоя  [c.196]

Попытки установить корреляцию между эксплуатационными характеристиками армированных пластиков и основными положениями химии поверхностных явлений оказались безуспешными. Адгезия красок, каучуков и герметиков к поверхности минеральных веществ и прочность стеклопластиков (особенно после выдержки в воде) очень слабо зависят от контактных углов смачивания, поверхностного натяжения адгезива, наличия непрочных пограничных слоев, морфологии и химии поверхности минеральных наполнителей и других важных факторов. Вполне вероятно, что при оценке адгезионных свойств по механическим характеристикам композитов могут использоваться отдельные параметры или их сочетания, которые оказываются несущественными при рассмотрении адгезии полимерных цепей на молекулярном уровне.  [c.182]

Особенность жидких металлов, обладающих более высокой теплопроводностью по сравнению с обычными жидкостями и как следствие этого низкими числами Прандтля, состоит в том, что даже при развитом турбулентном течении молекулярный перенос тепла играет важную роль не только в пристенном слое, но н в турбулентном ядре потока. Толщина теплового пограничного слоя для жидких металлов оказывается значительно большей, чем толщина гидродинамического пограничного слоя.  [c.90]

Здесь первый член условно характеризует термическое сопротивление ядра потока, определяемое турбулентным перемешиванием, а второй — пограничного слоя, в основном определямое молекулярным переносом, для которого характерно e < v, толщина (l- i i)< <1, и 1 Так как принято, что W r=l, то 1-fZ — отношение водяного числа всего дисперсного потока к водяному числу несущей среды — в пределах турбулентного ядра — величина неизменная. Тогда решение (6-49) можно провести так же, как и для однородного потока. Согласно [Л. 179] при Re>10 и константе х= = 0,4 для однородного потока  [c.206]

Прежде чем переходить к нахождению профиля скорости, необходимо отметить следующее обстоятельство. Вблизи обтекаемого тела число Рейнольдса, определенное по местным параметрам жидкости, может быть сколь угодно малым. Поэтому в этой области должно существовать ламинарное течение, где трение п теплообмен определяются молекулярным переносом, т. е. > > р-т, Эта часть пограничного слоя называется ламинар-  [c.323]

При очень больших значениях числа Кнудсена (К>1) пограничный слой у поверхности тела не образуется, так как ре-эмитированные (отраженные) поверхностью тела молекулы сталкиваются с молекулами внешнего потока на далеком от него расстоянии, т. е. тело не вносит искажений в поле скоростей внешнего потока. Для этого режима свободно-молекулярного течения газа , который по имеющимся данным наблюдается при M/R > 3, трение и теплообмен на поверхности обтекаемого тела рассчитываются из условия однократного столкновения молекул газа с поверхностью.  [c.133]

Рассмотрим систему уравнений двухмерного турбулентного пограничного слоя сжимаемой жидкости на продольно-обтекаемой пластине с нулевым градиентом давления, полученную Ван-Дрий-стом [103]. Если турбулентное движение разложить на осредненное и на пульсационное движения н пренебречь молекулярным переносом количества движения и теплоты, то уравнение движения и энергии можно представить в следующей форме  [c.217]

Материал книги условно можно разбить на две чазти. В первой из них (гл. 1—4) изложены основы процессов молекулярного переноса и излучения в газах, а во втсрой (гл. 5—7) даны основные уравнения аэротермохимии, сведения из теории процессов переноса в реагирующем пористом твердом теле и приложения этих фундаментальных понз тий к теории горения, физической газовой динамики, теории многокомпонентного пограничного слоя и вязкого удар][ого слоя.  [c.4]

Считая, что внутри температурного пограничногс слоя члены, характеризующие изменение энергии вслед,ствие конвекции и изменения времени, должны быть одного порядка с членами, характеризующими изменение энергии вследствие молекулярной теплопроводности, можно определить толщину температурного пограничного слоя  [c.378]

Профиль скорости легко получить из выражения (14.64). Для этого достаточно принять гипотезу о постоянстве турбулентного трения по толщине пограничного слоя Тт /(у) = onst. Подчеркнем, что речь идет о турбулентном трении, которое принимается постоянным в интервале бв.п г/ бт, где бв.п — толщина вязкого подслоя. В самом вязком подслое (см. рис. 14.9 область а) в связи с его малой толщиной [бв.п= (Ю ч--т-10 3)бт, см. пример 14.2] и преобладанием молекулярной вязкости обычно принимается прямолинейный профиль скорости, что по закону вязкого трения Ньютона дает T = onst и, следовательно, тс=Тв.п, где Тв.п — трение на границе между вязким подслоем и турбулентным ядром. В силу сказанного трение постоянно в интервале O i/ бт и равно трению на стенке Тс В этом случае для произвольного значения у из области турбулентного ядра бв.п У бт справедливо соотношение  [c.365]

Теплоотдача при турбулентном пограничном слое. Аналитический расчет теплоотдачи в турбулентном слое представляет большие трудности вследствие сложности самого двихсения и сложности механизма переноса количества движения и теплоты. Особенностью турбулентного течения является пульсационный характер движения. На рис. 2.34 показана осциллограмма колебаний скорости в фиксированной точке турбулентного потока. Отклонеггие мгновенной скорости w от средней w называется пульсацией. Наличие пульсаций как бы увеличивает вязкость, и тогда полная вязкость турбулентного потока будет суммой двух величин — молекулярной вязкости и дополнительной турбулентной. Турбулентная вязкость ji,p не является физическим параметром теплоносителя, как коэффициент динамической вязкости, и характеризует интенсивность переноса количества движения в турбу-лентно.м потоке. Аналогично вязкости в уравнении движения, в дифференциальном уравнении энергии дополнительно к молекулярной теплопроводности появляется турбулентная теплопроводность характеризующая турбулентный перенос теплоты и также не являющаяся физическим параметром теплоносителя.  [c.129]

В отличие от газов, жидкости характеризуются определенным объемом, но как и газы не имеют своей постоянной структуры и формы, а обладая высокой текучестью, принимают форму сосуда, в котором они находятся. В жидком состоянии молекулы находятся на близком расстоянии, при котором силы межмолекулярного взаимодействия и иритяжеиия молекул друг к другу осуществляются значительно больше, чем в газообразном. Этим обусловлено наличие сил поверхностного натяжения жидкостей в пограничном слое с газами. Эти силы молекулярного давления весьма значительны и находятся в пределах от 1000 до 10 ООО am, что п определяет малую сжимаемость жидкостей. Коэффициент сжимаемости раз.тичных жидкостей находится в пределах от 2 10- до 2 10- аш-1.  [c.52]


Рассмотрим теплообмен между реагирующим пограничным слоем и испаряющейся (сублимирующейся) поверхностью твердого тела. За пределами пограничного слоя параметры газа — плотность смеси рп, ее тангенциальная скорость Wx=Wo, концентрации компонентов смеси rriio — постоянны. Будем полагать для простоты, что число Прандтля газового потока равно единице и соответственно равен единице коэффициент восстановления. Пренебрежем тепловым излучением. Примем, что молекулярный массообмен осуществляется только концентрационной диффузией. Рассматриваемый процесс стационарен.  [c.358]

Тепловой поток снижается, проходя через пограничный слой е IV) до д в результате вдува газообразных продуктов разрушения материалов покрытия и конструкционной стенки на величину (а/С ) 7С, где у — коэффициент вдува, который в основном зависит от соотношения молекулярных масс вдуваемых компонентов, а С — безразмерный унос массы С=(йС/йт) (1/(а/С ,)о), где (а1С ) — коэффициент теплообмена для неразрушаемой стенки материала, пропорциональный коэффициенту массообмена в пограничном слое газа.  [c.90]


Смотреть страницы где упоминается термин Слой пограничный молекулярный : [c.163]    [c.64]    [c.138]    [c.393]    [c.22]    [c.267]    [c.274]   
Динамика разреженного газа Кинетическая теория (1967) -- [ c.401 ]



ПОИСК



Гиперзвуковые течения, близкие к свободномолекулярным Молекулярный пограничный слой

Молекулярный вес



© 2025 Mash-xxl.info Реклама на сайте