Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сила межмолекулярного взаимодействия

Внутренняя энергия системы есть сумма всей кинетической и потенциальной энергии частиц. Жидкостям и аморфным телам свойствен лишь ближний порядок, а газы имеют беспорядочное расположение частиц при максимальной внутренней энергии системы. Состояние вещества зависит от температуры Т и значения сил межмолекулярного взаимодействия. Энергия теплового движения или так называемая энергетическая температура частиц равна кТ. При высоких температурах значение кТ превосходит энергию взаимодействия молекул и вещество может быть только газом. Напротив, в кристалле частицы связаны сильно и энергия взаимодействия много больше кТ.  [c.31]


Если учесть силы межмолекулярного взаимодействия между испаряющимися молекулами компонентов, то может быть два случая  [c.285]

Идеальный газ. В идеальном газе силы межмолекулярного взаимодействия отсутствуют, а сами молекулы рассматриваются как материальные  [c.15]

Материальные тела могут находиться в одном из трех агрегатных состояний твердом, жидком и газообразном. Каждое из этих состояний характеризуется специфическими свойствами, которые определяются особенностями их атомно-молекулярной структуры, непосредственно связанной с силами взаимодействия между частицами. Этими силами являются силы притяжения и отталкивания, действующие одновременно и зависящие от расстояния г между частицами. Характер сил межмолекулярного взаимодействия можно качественно выяснить на примере двух изолированных молекул. При некотором расстоянии сила взаимодействия между ними равна нулю, т. е. силы притяжения и отталкивания уравновешиваются. При возрастании г результирующая этих сил является силой притяжения, которая сначала возрастает (по абсолютной величине), достигает максимальной величины при некотором а затем уменьшается, приближаясь к нулю (рис. 1, а). При межмолекулярных расстояниях т результирующая  [c.7]

Текучесть — свойство жидкости деформироваться под действием напряжения. Текучесть характеризуется величиной, обратной вязкости. У жидкостей текучесть проявляется при любых напряжениях. При разрушении стенки сосуда находившаяся в нем жидкость растекается под действием лишь собственного веса. Механизм текучести представляет собой преобладающую диффузию в направлении действия напряжения. При нормальных условиях текучесть определяется физической природой жидкости и зависит от сил межмолекулярного взаимодействия.  [c.5]

Вязкость проявляется лишь при движении жидкости и зависит от сил межмолекулярного взаимодействия.  [c.6]

В технике в качестве рабочих тел часто применяют газы и их смеси — такие, как Ог, Hj, N2, СО2, МН3, перегретый водяной пар, атмосферный воздух и др. Эти газы (их называют реальными) состоят из атомов и молекул, находящихся в непрерывном хаотическом движении. Молекулы обладают массой и собственным объемом, между ними существуют силы межмолекулярного взаимодействия.  [c.11]

Из курса физики известно, что целостность и неизменность размеров твердого тела, т. е. его прочность определятся силами межмолекулярного взаимодействия (внутренними силами). Вместе с этим известно, что при отсутствии внешних сил твердое тело остается прочным неопределенно долго. Известны горные породы, которые, не теряя прочности, просуществовали несколько миллиардов лет.  [c.20]


Важнейшими понятиями термодинамики являются внутренняя энергия и, работа L и теплота Q. Известно, что энергия вообще — это мера различных форм материального движения. Каждой форме движения соответствует определенный вид энергии. Энергию, соответствующую молекулярно-хаотическому движению, в термодинамике называют внутренней энергией состоит она из кинетической энергии движения молекул и потенциальной энергии сил межмолекулярного взаимодействия. В общем случае в состав внутренней энергии входит еще энергия, соответствующая внутримолекулярному, внутриатомному и внутриядерному взаимодействиям. Однако в технической термодинамике рассматриваются такие физические процессы, в которых эти составляющие внутренней энергии изменений не претерпевают и поэтому не учитываются.  [c.8]

Вещество в разных агрегатных состояниях имеет различные физические свойства, и в частности плотность. Это различие объясняется характером межмолекулярного взаимодействия. Мы ограничимся здесь лишь упрощенной трактовкой, основанной на явлении ассоциации, т. е. образования комплексов из большего или меньшего числа молекул. При переходе вещества из жидкой фазы в газообразную теплота фазового перехода тратится как на работу расширения, так и на преодоление сил межмолекулярного взаимодействия, выражающееся в разрушении ассоциированных комплексов. При этом уменьшается и плотность вещества. При плавлении или сублимации теплота фазового перехода затрачивается на разрушение кристаллической решетки твердого тела.  [c.135]

Отделение от жидкостей твердых загрязняющих примесей осуществляют механическим или силовым методами. В первом случае фильтрация осуществляется различными щелевыми и пористыми фильтрующими элементами (материалами) и во втором — силовыми полями магнитным, электрическим, гравитационным, центробежным и др. К последним очистителям относятся также средства очистки, в которых используются силы межмолекулярного взаимодействия, силы поверхностной активности материалов и прочие силы подобного рода.  [c.598]

При малых размерах зародышей н соответственно большой относительно поверхности их, для оценки общей и свободной энергии образуемой смеси существенное значение имеют поверхностная энергия и поверхностное натяжение. Дело в том, что молекулы, расположенные в тонком слое, непосредственно прилегающем к поверхности раздела, находятся в условиях, отличных от условий для молекул, находящихся в объеме. Они взаимодействуют не только с молекулами своей фазы, но также и с близлежащим слоем молекул другой фазы. Детальный анализ свойств поверхностного слоя является довольно сложным, поэтому вначале ограничимся идеализированной схемой, основанной на предположении о сплошности среды и постоянстве величины поверхностного натяжения. В действительности для очень малых капель, у которых линейные размеры сравнимы с радиусом действия сил межмолекулярного взаимодействия (10 см), поверхностное натяжение уменьшается при уменьшении радиуса капли,  [c.27]

Как известно, силы межмолекулярного взаимодействия в жидкости больше, чем в насыщенном паре этой жидкости. Рассмотрим молекулу, находящуюся внутри объема жидкости А на рис. 6-1). Очевидно, что на эту молекулу действуют силы притяжения со стороны других молекул, непосредственно примыкающих к рассматриваемой молекуле. Поскольку эти молекулы окружают рассматриваемую нами молекулу А со всех сторон, то, естественно, равнодействующая всех межмолекулярных сил, действующих на молекулу А, равна нулю. Совершенно иное положение у молекулы Б, находящейся на границе раздела фаз. В этом случае на молекулу Б действуют силы молекулярного притяжения со стороны молекул жидкости, расположенных с боков и снизу от молекулы Б, а сверху на молекулу Б действуют силы притяжения со стороны молекул, находящихся в паровой фазе над поверхностью жидкости. Следует заметить, что поскольку плотность пара значительно меньше плотности жидкости (всюду вдали от критической точки, где эти плотности сравниваются между собой), то и расстояния между молекулами в паровой фазе значительно больше, чем между молекулами в жидкой фазе. Отсюда очевидно, что силы притяжения, действующие на молекулу Б со стороны молекул паровой фазы, значительно меньше, чем силы притяжения со стороны молекул жидкой фазы. Следовательно, равнодействующая межмолекулярных сил, действующих на молекулу Б, не равна нулю. Понятно, что эта равнодействующая сила направлена внутрь жидкости по нормали к поверхности жидкости. Очевидно, что в таком же положении, как и молекула Б, находятся все молекулы, находящиеся на поверхности жидкости, и, следовательно, поверхностный слой оказывает давление на весь объем жидкости. Это давление называется внутренним давлением. Внутреннее давление жидкостей весьма велико. Расчеты показывают, что, например для воды при  [c.136]


Прочность адгезионного соединения лакокрасочных покрытий с твердыми недеформирующимися подложками обусловлена как силами межмолекулярного взаимодействия, так и силами главных химических валентностей.  [c.61]

Из курса физики известно, что целостность и неизменность размеров твердого тела, т. е. его прочность определяются силами межмолекулярного взаимодействия (внутренними силами).  [c.16]

Процесс искусственного обесцвечивания воды согласно современным представлениям протекает следующим образом. При добавлении к очищаемой воде раствора коагулянтов в течение первых 30—180 с происходит гидролиз добавленных солей и образуются коллоидные гидроксиды алюминия и железа, имеющие огромные активные поверхности. Коллоидные примеси, содержащиеся в воде, адсорбируются на поверхности частичек Гидроксидов. При адсорбции следует различать два процесса собственно адсорбцию и фиксацию (закрепление) адсорбированных коллоидов на поверхности. В первом процессе главную роль играют силы межмолекулярного взаимодействия. Адсорбция коллоидных частичек зависит от их дисперсности она тем больше, чем выше дисперсность и чем меньше устойчивость частичек.  [c.71]

В композиции с полимерной матрицей усилие от матрицы к армирующему элементу передается за счет сил межмолекулярного взаимодействия и имеет адгезионный характер. Обеспечить прочную связь между волокном и  [c.284]

Различие в физическом или фазовом состоянии полимеров обнаруживается на термокинетических кривых, отображающих изменение деформации материала пластика в результате приложения постоянной нагрузки при нагреве с постоянной скоростью. На кривых можно выделить три участка, соответствующих трем физическим состояниям (рис. 12.5, а). В области А полимер находится в твердом аморфном стеклообразном состоянии. Атомы и молекулы полимера, имеющего температуру, меньшую температуры стеклования совершают только тепловые колебательные движения около своих равновесных положений. Материалу при деформировании присущи упругие свойства. При температуре ниже температуры хрупкости полимер становится хрупким и его разрушение связано с разрывом химических связей в макромолекуле. Повышение температуры полимера выше увеличивает в нем частоту тепловых колебаний атомов, и отдельные сегменты макромолекул перемещаются, скрученные участки макромолекул выпрямляются. Макромолекулы ориентируются в направлении действия приложенного напряжения. Материал деформируется упруго. После снятия нагрузки макромолекулы под действием сил межмолекулярного взаимодействия принимают первоначаль-  [c.265]

При протекании жидкости через узкую щель, образованную неподвижными стенками, на границе раздела твердой и жидкой фаз происходит адсорбция поляризованных молекул жидкости, обусловленная силами межмолекулярного взаимодействия. В результате этого на поверхности стенок образуется фиксированный слой жидкости, обладающей определенной прочностью на сдвиг, а живое сечение потока в щели уменьшается. Такое заращиваиие щели называется облитерацией.  [c.75]

В XVII—XIX вв. англичанин Р. Бойль и французы Э. Ма-риотт, Ж. Гей-Люссак и Ж. Шарль экспериментально установили ряд важных газовых законов, названных их именами. Закономерности были получены при изучении поведения газов при небольших давлениях, близких к атмосферному. Считалось, что этим законам подчиняются все реально существующие газы. Однако впоследствии, когда появились более точные приборы и усовершенствовались методы исследования, было установлено, что реальные газы даже при невысоких давлениях не совсем точно следуют газовым законам. Это расхождение оказывалось тем меньше, чем меньше была плотность газа (меньше давление, выше температура), т. е. чем меньше были силы межмолекулярного взаимодействия.  [c.114]

Идеальными принято считать газы, подчиняющиеся уравнению Клапейрона (pv = RT). Под идеальными обычно понимают газы, в которых отсутствуют силы межмолекулярного взаимодействия, а объем молекул равен нулю. Учение об идеальных газах зародилось в XVII—XIX столетиях на основе экспериментальных исследований физических свойств реальных газов при давлениях, близких к атмосферному.  [c.20]

Источником информации о межмолекулярных силах служат эксперимент и квантово-механические расчеты, Существует возможность косвенного определения потенщалов сил межмолекулярного взаимодействия путем сопоставления коэффициентов переноса (вязкости, теплопроводкости, диффузии), рассчитанных при различных потенциалах взаимодействия, с величилами, найденными экспериментально.  [c.12]

Слюдопластовые бумаги служат для изготовления слюдопластов (делятся по применению на те же группы, что и слюдиниты). Слюдопластовые бумаги изготовляются, как и слюдинитовые бумаги, на бумагоделательной машине, но без применения связующего. Такая технология возможна благодаря тому, что сразу после расщепления кристаллы (чешуйки) природной слюды способны прочно соединяться за счет сил межмолекулярного взаимодействия (силы когезии). По сравнению со слюдинитами слюдопласты имеют, как правило, более высокую механическую прочность и более высокую устойчивость к воздействию электрической короны (короностойкость).  [c.235]

В отличие от газов, жидкости характеризуются определенным объемом, но как и газы не имеют своей постоянной структуры и формы, а обладая высокой текучестью, принимают форму сосуда, в котором они находятся. В жидком состоянии молекулы находятся на близком расстоянии, при котором силы межмолекулярного взаимодействия и иритяжеиия молекул друг к другу осуществляются значительно больше, чем в газообразном. Этим обусловлено наличие сил поверхностного натяжения жидкостей в пограничном слое с газами. Эти силы молекулярного давления весьма значительны и находятся в пределах от 1000 до 10 ООО am, что п определяет малую сжимаемость жидкостей. Коэффициент сжимаемости раз.тичных жидкостей находится в пределах от 2 10- до 2 10- аш-1.  [c.52]


Один из излюбленных приемов физики при изучении сложных явлений — идеализация последних. Например, любому школьнику знакомы законы, выведенные на основе понятия идеального газа (в котором отсутствуют силы межмолекулярного взаимодействия) Бойля — Ма-риотта, Гей-Люссака, Шарля, Авогадро.  [c.105]

Адсорбцией является концентрация газообразного или растворенного вещества на поверхности раздела фаз, т. е. в нашем случае на поверхности металла. Адсорбщ1я бывает физическая, обусловленная силами межмолекулярного взаимодействия (си-24  [c.24]

Адсорбщм ингибиторов на поверхности металла происходит в двойном злектрическом слое. На их адсорбцию существенно влияют величина й знак заряда металлической поверхности. Адсорбция нейтральных молекул ингибитора определяется силами межмолекулярного взаимодействия (силы Ван-дер-Ваальса) ври.адсорбции ингибиторов, диссоциирующих на ионы, определяющим является электростатическое притяжение иона к заряженной поверздаости металла. Для переходных металлоб (железо, платина и др.) адсорбция ингибиторов усиливается возникновением химической связи между молекулами ингибитора и адсорбирующей поверхностью [4].  [c.109]

Поскольку поведение жидкости в условиях невесомости определя ётся силами межмолекулярного взаимодействия на поверхности,, то можно обеспечить жела-тельное поведение жидкости в невесомости. Одно простое решение этой задачи связано с применением конических сосудов.-  [c.390]

МОЛЕКУЛЯРНЫЕ КРИСТАЛЛЫ — кристаллы, образованные молекулами, связанными силами межмолекулярного взаимодействия. Это гл. обр. ван-дер-ваальсовы силы и водородная связь. Внутри молекул атомы соединены более прочными ковалентными связями, поэтому плавление, возгонка и полиморфные переходы в М. к. происходят без нарушения целостности молекул.  [c.200]

МОЛЕКУЛЯРНЫЕ ЭКСИТОНЫ — электронные возбуждения (квазичастицы) в молекулярных кристаллах, обладающие свойствами Френкеля акситонов. Это означает, что молекулы и в основном, и в возбуждённой состояниях сохраняют свою индивидуальность, слабо возмущены внутрикристаллическим полем и волновые ф-ции соседних молекул перекрываются слабо. При этом, в отличие от Ванъе — Мотта экситона, возбуждение сосредоточено на одной молекуле. Возбуждённое состояние молекулы не локализовано и может перемещаться от молекулы к молекуле. Взаимодействие между молекулами приводит к образованию экситонной э. нергетич. зоны. Сила межмолекулярного взаимодействия определяет ширину экситонной зоны и характерную скорость экситонов. М. э. наблюдаются, напр., в кристалле бензола и более сложных родственных ему соединениях.  [c.205]

Атомы, входящие в основную цепь, связаны прочной химической (ковалентной) связью. Энергия химических связей составляет 330—360 кДж/моль, силы межмолекулярного взаимодействия, имеющие обычно физическую природу, значительно меньше (5— 40 кДж/.моль). Наиболее сильные межмолекулярные взаимодействия осуществляются посредством водородных связей (до 50 кДж/моль). Сцепление молекул материала за счет сил притяжения называется когезией. Макромолекулы могут быть построены из одинаковых по хиглическому строению мономеров (полимеры) или разнородных звеньев (сополимеры).  [c.435]

В композиции с полимерной матрицей усилие от матрицы к армирующему элементу передается за счет сил межмолекулярного взаимодействия и имеет адгезионный характер. Обеспечить прочную связь между волокном и матрицей можно при полном смачивании жидкой связующей упрочняющих волокон. В этом случае поверхностная энергия волокна должна быть больше поверхностного натяжения жидкой матрицы. Сх)еди полимеров жидкая эпоксидная смола, обладающая энергией поверхностного натяжения 5-10 Дж/м , лучше других полимеров смачивает углеродные и борные волокна, энергия поверхности которых имеет следующие значения (2,7 -н 5,8) X 10 Дж/м и 2 10 Дж/м соответственно. На практике повышения энергии поверхности волокон достигают, например, травлением, окислением, вискеризацией.  [c.314]

Внутренняя энергия вещества своим происхождением связана с движением молекул, составляющих вещество, и элементарных частиц, составляющих молекулы, и с силами межмолекулярного взаимодействия Ч Молекулярное движение может быть охарактеризовано запасом молекулярно-кинетической энергии, силы межмолеку-ляр ного взаимодействия — запасом молекулярно-потенциальной энергии.  [c.79]

Различаю неограниченное и офаниченное набухание. Если цепи полимера окажутся достаточно раздвинутыми НМЖ, силы межмолекулярного взаимодействия между макромолекулами ослабевают и макромолекулы могут переходить в НМЖ. В конце концов образуется однофазная гомиенная система,  [c.96]

Упорядочение структуры линейных полимеров при их ориентационной вытяжке ведет к анизотропии механических свойств, имеющей не только количественный, но и качественный характер. При растяжении вдоль направления ориентации прочность определяется силами химической связи в молекулах, которые при этом располагаются более или менее параллельно и однородно. При растяжении же в поперечном направлении прочность ориентированного полимера определяется только силами межмолекулярного взаимодействия, а эти силы значительно меньше первых. В этом случае можно принять в пленках расчетную схему ортогональной анизотропии. Для многих листовых материалов, толщина которых мала по сравнению с размерами листа (бумага, картон, искусственные кожи, ориентированные пленки), характерны значительные деформативность и реономность свойств.  [c.23]

Влияние среды. В зависимости от механизма действия среды на резину различают физически активные и кимически ак-гивные среды. Физически активные среды не вызывают разрушений поперечных связей в резине, оказывая влияние лишь на силы межмолекулярного взаимодействия. Как правило, резина  [c.30]


Смотреть страницы где упоминается термин Сила межмолекулярного взаимодействия : [c.70]    [c.114]    [c.128]    [c.123]    [c.40]    [c.27]    [c.60]    [c.376]    [c.240]    [c.236]    [c.184]    [c.484]    [c.45]    [c.222]   
Техническая гидромеханика 1978 (1978) -- [ c.7 ]



ПОИСК



Межмолекулярное взаимодействие

Молекулярные столкновения. Межмолекулярные силы и потенциалы межмолекулярного взаимодействия

Сила межмолекулярная

Силы взаимодействия



© 2025 Mash-xxl.info Реклама на сайте