Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пассивность фазовая

В настоящее время в стокс-поляриметрах чаще всего используют не пассивные фазовые элементы (типа пластинок Х/4), а активные — элементы с параметрами, изменяющимися  [c.308]

Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок BE на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко,)обр DEF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных.  [c.197]


Таким образом, явление пассивности состоит в сильном замедлении анодного процесса растворения металлов вследствие и -менений заряда и свойств поверхности металлов, вызванных образованием на ней адсорбционных, фазовых или адсорбционно-фазовых пленок окислов или других соединений.  [c.312]

Торможением анодного процесса вследствие наступающего явления анодной пассивности объясняется малая скорость коррозии ряда металлов и сплавов и, в частности, нержавеющих сталей, а также алюминия в водных растворах солей ири доступе кислорода воздуха или в азотной кислоте. Образование анодных фазовых пленок на поверхности металла может быть результатом осаждения на поверхности анода труднорастворимых  [c.35]

Переход металла из активного в пассивное состояние носит название пассивации, а обратный процесс — активации или де-пассивации. Пассивный металл с термодинамической точки зрения не является более благородным, чем активный, а замедление коррозионного процесса происходит благодаря образованию на металлической поверхности фазовых или адсорбционных слоев, тормозящих анодный процесс.  [c.59]

Несмотря на широкую распространенность способа повышения коррозионной стойкости поверхности металлов пассивными пленками, все же большое число явлений, наблюдаемых при пассивации, не может быть объяснено только одним защитным эффектом фазовой пленки. Так, например, при изучении пассивности нержавеющих сталей Г. В. Акимов пришел к выводу, что большая часть поверхности закрыта фазовой пленкой, под которой и в ее порах находятся адсорбционные атомы или ионы кислорода.  [c.63]

Применение такого варианта метода медленно меняющихся амплитуд иногда упрощает нахождение стационарных решений, особенно в задачах, где отсутствует опорное колебание (вызванное, например, внешней силой, модуляцией параметра, синхронизирующим сигналом), фазовый сдвиг (фаза) которого относительно искомого колебания естественно вошел бы в решение. К подобным системам относятся, в частности, пассивные линейные и нелинейные колебательные системы, автоколебательные системы и др. Некоторое облегчение решения задач этот вариант метода ММА дает также в тех случаях, когда нелинейные характеристики каких-либо параметров колебательной системы аппроксимируются высокими степенями разложения в ряд.  [c.75]


Пары трения можно рассматривать как пассивные диссипативные структурообразующие системы, взаимосвязанные с окружающей средой и действующие в условиях роста энтропии. Отсюда разрушение трибосистемы можно определять как диссипативный фазовый переход, при котором происходит обратный переход от диссипативных структур к равновесным, сопровождаемый возрастанием их аккумулированной энтропии [60].  [c.108]

Наиболее полно изучены процессы питтингообразования на коррозионно-стойких сталях. При наличии в коррозионной среде хлорид-ионов становится возможным активирование поверхности в отдельных ее точках, где пассивное состояние по каким-либо причинам менее устойчиво, чем на остальной поверхности. Такими участками могут быть неметаллические включения, структурные дефекты или участки с менее совершенной фазовой или адсорбционной пленкой, границы зерен и т. д. На этих участках хлорид-ионы относительно легко вытесняют кислород с поверхности и способствуют началу развития коррозии.  [c.166]

Пассивность металла — состояние достаточно высокой коррозионной стойкости, обусловленное торможением анодной реакции ионизации в определенной области потенциалов. Переход металла из активного состояния в пассивное называется пассивацией, обратный процесс обычно называют депассивацией (активацией). Замедление коррозии поверхности металла при пассивации обусловлено образованием на ней фазовых или адсорбционных пленок.  [c.20]

Существуют две основные теории пассивности пленочная и адсорбционная. Согласно первой, торможение коррозии обусловлено формированием на поверхности металла фазовой пленки, согласно второй - образованием адсорбционного многомолекулярного слоя кислорода или заполнения только отдельных активных центров. Теории эти не противоречат, а скорее дополняют одна другую.  [c.20]

Пассивность металлов. Состояние относительно высокой коррозионной стойкости, связанной с торможением анодного процесса в определенном интервале значений потенциала вследствие образования на металлической поверхности фазовых или адсорбционных слоев. Возможность перехода металлов в пассивное состояние (пассивация) зависит от природы металлов. Так, например, А1, Сг, N1, Т1, Мо легко пассивируются, при легировании этими элементами можно увеличить склонность сплавов к пассивации.  [c.253]

Таким образом, в случае двухфазных сплавов при определенных условиях (водородная деполяризация, отсутствие пассивности) зависимость состав —скорость коррозии представляет собой сложную кривую с максимумом, положение которого определяется поляризационными характеристиками фазовых составляющих.  [c.156]

Относительно механизма питтинговой коррозии единого мнения нет. В настоящее время обсуждаются различные варианты двух теорий, основанных на фазовой или адсорбционной трактовке природы пассивности металлов.  [c.47]

Таким образом, резкое торможение анодной реакции ионизации металла в присутствии специальных соединений, или при анодной поляризации, т. е. наступление пассивного состояния, можно объяснить образованием фазовых или адсорбционных пленок. Отсюда и возникли две теории пассивности — пленочная и адсорбционная.  [c.78]

Длительное время фазовая и адсорбционная теории пассивации противопоставлялись. На самом же деле оснований к этому мало, поскольку один вид пассивности может переходить в другой, а иногда, вероятно, они могут проявляться одновременно. В частности, известно, что фазовой пассивности предшествует адсорбционная, а адсорбционная, как было предположено Акимовым и Батраковым [28, с. И], облегчается при наличии на поверхности фазовой пленки.  [c.24]

Депассивирующее или затрудняющее пассивацию влияние некоторых анионов также нельзя объяснить, считая причиной пассивности фазовый окисел. Большое число исследований показывает, что присутствие некоторых ионов в растворе либо тормозит, либо ускоряет анодный процесс. Рассмотрим некоторые данные. На рис. VI,36 [45] показано активирующее влияние S0 на железо. Кривая 2идет сначала сходно с кривой ф в обоих случаях близок, но 1, увеличивается при добавке S0 ". Следовательно, S0 принимает определенное участие в анодном растворении железа. Уменьшение тока после ф говорит об адсорбции, тормозящей анодный процесс (допустим, что адсорбируются ионы ОН ). При дальнейшем увеличении потенциала ток в присутствии S0 " снова возрастает (участок I). Возможно, что здесь пассивирующие ионы вытесняются ионами SO4". При этом поверхность электрода подвергается точечному  [c.233]


Многие из приведенных фактов не поддаются объяснению, если считать причиной пассивности фазовый окисел. Особенно это относится к случаям депассивирующего действия некоторых анионов. Очень выразителен пример депассивации железа ионами IO4, которые обычно рассматриваются как ионы, мало склонные к адсорбции.  [c.235]

Возникновение и начальная стадия питтинга. Возникновение питтинга связано с анодным электрохимическим пробоем пассивной (фазовой или адсорбционной) пленки в отдельных точках (где пассивное состояние менее со(вершенно) и при достижении поверхностью металла определенного для данных условий значения потенциала (потенциала питтингообразования). Согласно пленочному механизму пассивности, образование питтинга происходит в результате адсорбции активирующих ионов, например, хлор-ионов, в наиболее анодных участках, их  [c.75]

Существует две основные теории пассивности металлов. Согласно первой — пленочной теории па(. сивного состояния, торможение процесса растворения металлов наступает в результате образования на их поверхности фазовой пленки согласно второй—адсорбционной теории, для пассивирования металла достаточно образование мономолекулярного слоя или заполнения только части поверхности металла атомами кислорода или кис-,лородосодержащих соединений.  [c.62]

ГазиЕ/ю фазу будем рассматривать состояш ей из двух компонент. Первая, или пассивная, с плотностью p i не претерпевает фазовых переходов, соответствующие ей параметры будут снабжаться индексом 1 внизу. Вторая, с плотностью Pg2, являюш аяся паром конденсированной или жидкой фазы, может претерпевать фазовые переходы на межфазной поверхности, соответствующие ей параметры будут снабжаться индексом g2 внизу. Плотность газа и концентрации компонент определяются формулами  [c.266]

Газовую фазу будем рассматривать состоящей из двух компонент. Первая, илп пассивная, с плотностью Р.(11 пе претерпевает фазовых переходов, соответствующие ей параметры будут снабжаться индексом g (l) внизу. Вторая — с плотностью являюгцаяся паром конденсированной пли жидко фазы, мон ет претерпевать фазовые переходы на межфазной поверхности, соответствующие ей параметры будут снабжаться индексом g(2) внизу. Плотность газа и концентрации компопеит определяются формулами  [c.177]

Коррозионная стойкость стали в атмосферных условиях резко возрастает при введении даже незначительного количества легирующих элементов, поэтому применение низколегированных сталей в качестве строительных и конструкщюнных материалов, эксплуатируемых в атмосферных условиях, экономически выгодно долговечность сооружений может быть повышена в 2-3 раза без дополнительной защиты в условиях промышленной, городской и сельской атмосферы. Защитное действие легирующих элементов в атмосферостойких низколегированных сталях основано на том, что легирующие элементы либо их соединения тормозят обычные фазовые превращения в ржавчине (см. рис. 1), и поэтому слой ржавчины на атмосферостойкой стали уплотняется. Считается также, что наряду с усилением защитных свойств слоя продуктов коррозии основной причиной положительного влияния меди является возникновение анодной пассивности стали за счет усиления эффективности катодной реакщш. Действие меди как эффективного катода подтверждается тем, что ее положительное влияние наблюдается уже в начальных стадиях коррозии, когда на поверхности стали еще не образовался слой видимых продуктов коррозии.  [c.12]

В заключение следует отметить, что трудно установить границу изменения свойств между видимыми (фазовыми) и невидимыми (полимолекулярными) пленками электролитов. Можно утверждать, что природа и скорость коррозионно-электрохимических процессов в таких пленках, образованных только молекулами воды (в отсутствие ионизированных компонентов), в первом приближении идентичны. Большинство металлов в такой чистой влажной атмосфере (подобной среде деионизированной воды) находились бы в пассивном состоянии и скорость коррозии их была бы исчезающе малой. Наличие же ионизирующихся примесей в атмосфере влияет не только на структуру полимолекулярных адсорбированных слоев воды , трансформируя их в фазовые пленки электролитов, но и резко уменьшает кинетическое торможение коррозионных реакций.  [c.68]

ШвЗ бе указывает на возможность образования фазовых окисных слоев в стационарном пассивном состоянии, не считая вместе с тем, что это может служить причиной пассивации. Такой механизм влолне. вероятен для металлов, окис-ные пленки которых обладают ничтожной электронной проводимостью. Для них процесс миграции ионов металла через окисную 1пл нку требует меньших лотеициалов, чем, напрк-мер, разложение воды с выделением кислорода по реакции  [c.118]

В случае пассивных пневмодемпферов внешнее возбуждение выбиралось в виде суммы гармонических составляющих с рационально независимыми частотами. Это позволит (п. 4) равномерно пройти фазовой траекторией исследуемую область определения модели и, регулируя амплитуды гармонических составляющих, осуществить различные движения (большие, средние и малые). Как показывают результаты, приведенные в табл. 1, 2, линейная модель дает удовлетворительное приближение лишь на малых движениях. Оценки параметров для этих случаев показывают, что они нечувствительны к появлению нелинейных членов-в характеристике жесткости, а погрешности при этом практически не снижаются. Следовательно, полученные в этих случаях погрешности могут быть отнесены к ошибкам воспроизведения таких классов уравнений на АВМ.  [c.82]

В системе дроссельного регулирования и — координата, определяющая положение золотника связь этого входного параметра с фазовыми выходными координатами такл е определяется выражением (7.14). Гидравлические демпферы с дросселирующими клапанами используются в различных системах позициопного управления для создания тормозящих сил. Теория и принципы конструирования таких демпферов рассмотрены в имеющейся литературе. В принципе гидравлический демпфер может рассматриваться как пассивное устройство, формирующее силовое управ-леине / = /(i), где х — скорость выходного звена, соединенного с демпфером.  [c.124]


Выбор стеклофазы 278-2 обусловлен, кроме удовлетворения требонаний химической пассивности по отношению к функциональному материалу в условиях термообработки, стабильностью фазового состава в диапазоне температур 500—800 °С. Композиционная система со стеклофазой должна быть устойчива к многократным термическим воздействиям, которые характерны при создании многослойных толстопленочных схем.  [c.474]

В работе [1] рассмотрены электромеханические виброкомпенсаторы, существенно улучшающие действие пассивной виброизоляции. На рис. 1 и 2 показана система активной виброизоляции однонаправленных колебаний при двух способах установки электромеханического вибратора жестком креплении к источнику и упругом креплении к изолируемому объекту. Упрощенная эквивалентная схема системы (источник — масса, возмущаемая внешней силой /о, изолируемый объект — масса или относительно жесткое основание, активные виброизоляторы — один упругий элемент с потерями и один вибратор) в большинстве случаев достаточна для исследования устойчивости и эффективности гашения в области основного резонанса, не включающей собственные частоты источника и изолируемого объекта, как упругих систем. Активный виброизолятор содержит следующие элементы цепи управления вибродатчик — источник управляющего сигнала, усилители, обеспечивающие нужное усиление и фазовый сдвиг в полосе рабочих частот.  [c.66]

В результате научно-исследовательских работ удалось синте-тизировать ряд монокристаллов ферритов для линейных и нелинейных сверхвысокочастотных ферритовых устройств. Монокристаллы ферритов применяются в узкополосных перестраиваемых фильтрах, амплитудных и фазовых модуляторах СВЧ и оптического диапазона, в пассивных ограничителях мощности, преобразователях частоты и т. п.  [c.34]

АКТИВНАЯ АНТЕННА — антенна, содержащая в своей структуре активные y Tpoii TBa, в частности усилители мощности (переданная А. а.) или малошумящие усилители (приёмная А. а.). Чаще всего А. а. явля-ется антенная решётка. Исполь.эование активных устройств в передающей А. а. позволяет компенсировать потери в трактах и обеспечивать оптим. распределение амплитуд и фаз токов по излучающей апертуре. Напр., если усилители мощности, подключённые непосредственно к излучателям А. а., работают в режиме насыщения, то независимо от используемой системы возбуждения можно поддерживать постоянным распределение амплитуд токов в излучателях, что обеспечивает макс. коэф. направленного действия и повышает стабильность работы антенны. Приёмная А. а. со встроенными малошумящими усилителями имеет существенно большее отношение сигнал/шум на входе приёмника по сравнению с аналогичной пассивной антенной. Регулируя усиление активных устройств, можно эффективно осуществлять управление диаграммой направленности, независимо регулируя амплитуды и фазы токов в элементах решётки (напр., в адаптивных антеннах). Амплитудно-фазовое управление диаграммой направленности можно реализовать в приёмных А. а. с преобразованием радиосигналов (папр., аналого-цифровым) соответствующим выбором амплитуд н фаз весовых коэф. при обработке. Недостатки А. а. активные элементы выделяют тепло, ра.эброс их характеристик приводит к дополнит, искажениям поля.  [c.38]

Структура поля систомы излучателей зависит от их взаимного расположения, общей конфигурации системы, фазовых и амп.литудных соотношений между токами в излучателях и в пассивных элементах и т. д.  [c.95]

Особенности волновых процессов в нелинейных системах удобно пояснить на примере одномерных возмущений в энергетически пассивной, слабонелине1шой однородной среде, когда спектральный язык ещё не утрачивает свою пригодность. В линейном приближении поле В. есть суперпозиция нормальных гармонич. В. с частотами й) и волновыми числами к, подчиняющихся дисперс. ур-нию (8). А в нелинейном режиме гармонич, В. взаимодействуют, обмениваясь энергией и порождая В, на новых частотах. В частности, затравочное возмущение на частоте ш сопровождается появлением высших гармоник на частотах 2<в, Зи и т. д. Энергия колебаний как бы перекачивается вверх по спектру. Эффективность этого процесса зависит от дисперс. свойств системы м может быть велика даже при очень слабой нелинейности. Действительно, если дисперсии нет. то В. всех частот распространяются синхронно с одинаковыми Уф, и их взаимодействие будет иметь резонансный, накапливающийся характер, поэтому на достаточно больших длинах (в масштабе к) перекачка энергии может осуществляться весьма эффективно. Если дисперсия велика, то фазовые скорости гармонич. возмущений, имеющих разные частоты, не совпадают, с.т1едовательно, фаза их взаимных воздействий будет быстро осциллировать, что приведёт на больших длинах к ничтожному результирующему эффекту. Наконец, возможны специальные, промежуточные случаи, когда я системе с сильной дисперсией только две (или несколько) избранные В. с кратными частотами имеют одинаковые 1 ф и поэтому эффективно взаимодействуют. В ряде случаев достигается своеобразное спектральное равновесие, когда амплитуды всех синхронных гармоник сохраняются неизменными и суммарное поле имеет вид стационарной бегущей Б, вида (1), при этом в случае сильной дисперсии ф-ция f x—vt) близка к синусоиде, а при слабой — она может содержать участки резкого изменения поля (импульсы, ступеньки и др.), поскольку число гармоник в её спектре велико.  [c.324]

Сопоставление температурно-временных областей возникновения склонности к МКК и хрупкости показывает, что они не совпадают и влияние титана на эти процессы различно (рис. 1.27). Более детальное представление о природе МКК и хрупкости аустенито-ферритных сталей дают фазовый анализ выделяющихся вторичных фаз и исследование электрохимического поведения сталей в широком интервале потенциалов (рис. 1.28). В закаленном состоянии низкоуглеродистые или стабилизированные стали равноценны по токам растворения в пассивной области. Однако, по-видимому, предупреждение МКК путем снижения углерода предпочтительнее, так как низкоуглеродистые стали имеют более широкую область оптимальной запассивированности (рис. 1.28, кривые 1—3). Склонности к МКК соответствует ухудшение пас-  [c.36]

Как физическое явление АЭ представляет собой процесс возникновения в материалах механических волн, излучаемых структурой под действием внешних нагрузок и высоких внутренних напряжений. АЭ возникает в результате образования и развития трещин, перестройки дислокационной структуры при пластической деформации, фазовых превращений, протекающих при термической обработке. Скачкообразная перестройка структуры сопровождается резкой релаксацией упругих напряжений, в результате чего возникают и распространяются в материале механргческие волны. Эти волны с помощью специальных датчиков, установленных на поверхности материала, преобразуются в электрические сигналы, анализ параметров которых и составляет сущность метода АЭ. Принципиальным отличием метода является то, что с помощью АЭ обнаруживаются активные, то есть развивающиеся, наиболее опасные дефекты, тогда как традиционные методы контроля вьивляют только пассивные (неподвижные) дефекты.  [c.82]

Точно также и адсорбционная теория, полагающая, что пассивное состояние металла вызывается образованием на его поверхности мономоле-кулярных адсорбционных слоев кислорода или окислителя, не может не учитывать ту несомненную роль, которую играют фазовые пленки для алюминиевых сплавов, нержавеющих сталей и т. п.  [c.81]

Имеются высказывания и о том, что пассивное состояние обусловлено возникновением РеО-ОН. Сухотин [18] предполагает, что пассивное состояние железа обусловлено фазовой пленкой Рез04, образование которой происходит через ряд промежуточных стадий. Основанием для такого вывода послужило то, что наблю-  [c.19]


Интересные результаты в этом отношении были получены также Снейвли и Хаккерманом [24]. По их данным для пассивации железа в подкисленном растворе сульфата требуется -3 мКл/см электричества в расчете на видимую поверхность. Далее авторы катодной поляризацией восстанавливали пассивный слой и наблюдали за анодным поведением электрода оказалось, что можно восстановить - 70% окисного слоя, а электрод останется в пассивном состоянии. Такой частично восстановленный электрод анодпо не растворяется. Отсюда было сделано заключение, что для пассивирования железа в сульфатном растворе достаточно 1 мКл/см электричества, что соответствует моноатомному слою кислорода. Такая пассивность в отличие от фазовой называется адсорбционной.  [c.23]

В частности, Эванс, который является сторонником фазовой теории пассивности, считает (если предположить, что переход железа в раствор возможен только на участках с дефектной структурой), что для пассивации достаточно менее одного монослоя кислорода. Однако природа пассивирующего слоя не изменится. Для полной пассивации, по Эвансу, необходимо, чтобы на поверхности металла возникла трехмерная пленка [25]. Аналогичную точку зрения высказал недавно Хор [26]. По его мнению, одного монослоя кислорода может и достаточно для временного уменьшения реакционной способности металла, но для того чтобы металл остался в пассивном состоянии при изменении внешних условий (например, при переносе железа из концентрированного раствора азотной кислоты в разбавленный, которое наблюдали Фарадей и Шенбейн), необходима более толстая окисная пленка.  [c.24]


Смотреть страницы где упоминается термин Пассивность фазовая : [c.347]    [c.13]    [c.64]    [c.119]    [c.9]    [c.431]    [c.431]    [c.594]    [c.32]    [c.234]    [c.599]    [c.80]   
Ингибиторы коррозии (1977) -- [ c.23 ]



ПОИСК



Пассивность

Пассивность железа как следствие образования фазового окисла



© 2025 Mash-xxl.info Реклама на сайте