Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Протекторы и катодная защита

Протекторы и катодная защита  [c.789]

ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту. Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии. Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично. Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда  [c.218]


Протекторная и катодная защита основана в наложении отрицательного потенциала на поверхность металла, при котором значительно замедляется процесс его ионизации. В протекторной защите источником поляризующего тока является гальванический элемент, состоящий из защищаемой металлической конструкции и протектора, изготовленного из специального сплава, характеристика которых приведена в табл. 3.  [c.11]

Осуществлять защиту отдаленных от рельсов сооружений электродренажными установками экономически нецелесообразно из-за дороговизны прокладки электрокабелей большой длины и сечения. Поэтому защиту таких сооружений осуществляют, как правило, протекторами и катодными установками.  [c.60]

В районах прибрежного шельфа во всем мире (где имеется около 7000 буровых и пр оду кто добывающих площадок) ежегодно прокладывают в море по нескольку тысяч километров трубопроводов. Всего до 1974 г. было проложено около 25 Тыс. км [19]. Первые трубопроводы в прибрежном шельфе прокладывали на небольших глубинах и они имели небольшую длину и малый диаметр, а теперь сооружают трубопроводы длиной до нескольких сот километров при условном проходе до 1000 мм. Для коротких трубопроводов возможна и катодная защита с наложением тока от постороннего источника, однако она применяется сравнительно редко [20]. Возможная протяженность зоны защиты для трубопровода с условным проходом 300 мм и толщиной стенки 5 = 16 мм при наличии изолирующего покрытия хорошего качества согласно расчету по формуле (24.102) может составлять около 100 км. При более длинных трубопроводах в прибрежном шельфе для катодной их защиты обычно применяют цинковые протекторы [21—  [c.349]

Катодная защита водоподогревателей из углеродистой стали получила широкое развитие, потому, что она представляет собой экономически выгодную альтернативу применению материалов повышенной коррозионной стойкости. В настоящем разделе более подробно рассматриваются две системы, нашедшие наибольшее применение на практике катодная защита эмалированных водоподогревателей с применением магниевых протекторов и комбинированная защита резервуаров и трубопроводов при помощи алюминиевых анодов с наложением тока от постороннего источника. Эти способы могут быть применены и для внутренней защиты от коррозии резервуаров с холодной водой.  [c.401]

Применение цинка в коррозионных средах. Около половины выпускаемого цинка используется для защитных покрытий железа и стали, а также в качестве протекторов для катодной защиты стальных изделий в электролитах. На воздухе цинк более коррозионно устойчив, чем сталь, за исключением особых условий, когда в атмосфере имеется сернистый газ. На воздухе  [c.263]


Наиболее эффективным средством защиты металлических конструкций от коррозии блуждающими переменными токами является метод поляризованных (присоединенных к защищаемому сооружению через полупроводниковые диоды) протекторов и дренажей он дает возможность снять с корродирующих металлических конструкций анодный полупериод переменного тока и оставить на них катодный полупериод, который обеспечивает их катодную защиту.  [c.397]

В по МСЭ), сила тока в цепи труба—протектор и потенциал на трубопроводе. При наладке катодной и электродренажной защиты проверяются потребляемый ток, напряжение и потенциал труба — земля в точке подключения. Защитная зона установки определяется расстоянием от точки ее присоединения к трубопроводу до участка, где потенциал достигает защитной величины. Величины граничных значений защитных потенциалов приведены в табл. 13.  [c.66]

Приведены подробные сведения о применяемых в ФРГ протекторах, преобразователях станций катодной защиты и анодных заземлителях, используемых в установках катодной защиты с внешним источником тока. Описаны особенности катодной защиты от коррозии резервуаров-хранилищ, цистерн, промышленных объектов, кабелей телефонной и телеграфной связи, а также силовых кабелей.  [c.14]

В последующих главах подробно рассматриваются свойства и применение протекторов, катодных преобразователей, специального оборудования для защиты от блуждающих токов и анодов (анодных заземли-телей) с наложением внешнего тока. В числе областей применения рассматриваются подземные трубопроводы, резервуары-хранилища, цистерны, кабели систем связи, сильноточные кабели и кабели с оболочкой, заполненной сжатым газом, суда, портовое оборудование и внутренняя защита установок для питьевой воды и различных промышленных аппаратов. Отдельная глава посвящена проблемам защиты трубопровода и кабелей, подвергаемых действию высокого напряжения. В заключение рассматриваются затраты на защиту от коррозии и вопросы экономичности. В приложении даны справочные таблицы и дан вывод математических формул, представлявшихся необходимыми для практического применения способов защиты и для более полного понимания излагаемого материала.  [c.18]

Цинк тоже применялся для катодной защиты уже в 1824 г. (см. раздел 1.3). Так называемый котельный цинк, первоначально примененный для защиты стальных судов, оказался непригодным, поскольку он покрывался твердым слоем и становился пассивным. При использовании высокочистого цинка такой пассивации не происходит. Цинк в такой форме является самым удобным из всех материалов протекторов [5,]. Чистый цинк (чистотой 99,995 %), содержащий менее 0,0014% железа, пригоден как материал для изготовления протекторов без дополнительных добавок. Такой цинк регламентируется стандартом военного ведомства США MIL—А—18.001 А и допущен в военно-морском флоте ФРГ [6)]. Важнейшие свойства чистого цинка приведены в табл. 7.1.  [c.179]

Протекторы нельзя укладывать в кокс, как это обычно практикуется в случае анодных заземлений катодной защиты с наложением тока от постороннего источника, изготовляемых из графита и кремнистого чугуна. При этом ввиду разности потенциалов между протектором и коксом образуется сильный коррозионный элемент, что приводит к быстрому разрушению протектора. Кроме того, движущее напряжение  [c.189]

В первые годы применения катодной защиты в материале протектора просверливали отверстия и соединяли протекторы с защищаемой поверхностью на резьбе (болтами). Позднее начали применять присоединения к закладным деталям в виде трубы. В настоящее время все протекторы обычно закрепляют при помощи закладных элементов специальной формы. Такие устройства обеспечивают перетекание тока от протектора на защищаемый объект с минимальным электросопротивлением и позволяют оптимально использовать материал протектора.  [c.190]

По катодной защите трубопроводов изданы технические нормативные документы [5—9]. Обычно применяется способ наложения тока от постороннего источника. На рис. 1.1 схематически иллюстрируется устройство и принцип действия станции катодной защиты (СКЗ). В разделе 8 были рассмотрены анодные заземлители и аноды, в разделе 9 — защитные преобразователи. Протекторы (раздел 7) применяются лишь в особых случаях.  [c.245]


При катодной защите подземных резервуаров-хранилищ с помощью протекторов обычно применяют магниевые протекторы, поскольку цинковые протекторы имеют слишком малое движущее напряжение (см. раздел 7,2.2). Достигаемая величина защитного тока h при использовании протекторов зависит от движущего напряжения Ut, действующего между объектом катодной защиты и протекторами (анодами), а также от сопротивления растеканию тока в грунт с объекта защиты Rk и с протекторов Ra [см. формулу (7.13)]. Поправками на расстояние между протекторами и на сопротивление подводящих проводов можно пренебречь, и защитный ток составит  [c.272]

Полная или частичная катодная защита (кормы и носа) достигается соответствующим размещением протекторов, так чтобы сохранялось желательное распределение тока на рассматриваемом участке судна. Протекторы отдают в зависимости от их размеров и действующего напряжения некоторый наибольший ток, определяемый главным образом электропроводностью воды. Наибольший ток, рассчитанный по напряжению и сопротивлению растеканию согласно формуле (7.14), на практике снижается вследствие образования защитного слоя и возникновения сопротивлений поляризации на работающих протекторах этот эффект зависит от материала протектора, от среды и от времени или от условий эксплуатации. Поэтому попятно, что указываемые изготовителями наибольшие значения тока для конкретной среды на практике могут подвергнуться изменениям. При проектировании необходимо учитывать, чтобы достигались и общий ток, и требуемая плотность защитного тока или протяженность зоны защиты. В начале эксплуатации покрытия еще имеют высокое электросопротивление и низкую степень поврежденности. В таком случае протяженность зоны защиты [по формуле (2.44)] получается большой, а требуемый защитный ток малым. В ходе эксплуатации электросопротивление покрытия снижается, вследствие чего не только возрастает требуемый защитный ток, но и уменьшается протяженность зоны защиты. Особое внимание нужно обращать и на то, что при уменьшении проводимости воды, например в портах, протяженность зоны защиты [по формуле (2.44)] уменьшается. Если временно защитный потенциал не везде будет достигнут, то большой опасности коррозии все же не возникнет, потому что катодная защита обычно подавляет действие коррозионных элементов, О зависимости скорости коррозии (по съему материала) от потенциала имеются данные на рис, 2,9.  [c.360]

Суда с неметаллическим корпусом нередко имеют металлические навесные устройства, для которых может быть применена катодная защита. При этом протекторы привинчивают (крепят болтами) на деревянном или пластмассовом корпусе судна и обеспечивают их низкоомное соединение с объектами защиты через внутреннее пространство судна. Для этой цели используют металлический фундамент привода (движителя) или медные ленты.  [c.362]

Для катодной защиты от коррозии применяют протекторы и наложение тока от внешнего источника. Для Предотвращения слишком сильного выделения водорода диапазон защиты должен быть ограничен до t/fjs =—0,9 В. Обычно нужно учитывать, что при внутренней катодной защите закрытых резервуаров или других установок возможна опасность взрыва, если не обеспечивается достаточно равномерное потребление продукта (проточность) или если не приняты меры для отвода газа из установок.  [c.379]

Защита от коррозии под напряжением. Склонность к коррозионному растрескиванию котлов в установках среднего давления и котлов локомотивов можно снизить добавками N32504 или NaNOs к котловой питательной воде [111]. Силикат натрия, так же как и магниевые протекторы и катодная защита с применением внешнего источника тока, устраняет опасность образования трещин в щелочных растворах.  [c.44]

Описаны основы коррозии и электрохимической защиты, теоретические основы и практика электрохимических измерений. Большое внимание уделено измерению потенциала в условиях подземной катодной защиты. Рассмотрены вопросы пассивной защиты, защиты протекторами и активной защиты как подземных сооружений, так н металлическпх сооружений в морской воде, а также защиты корпусов судов и отдельных элементов конструкций судов. Проанализировано влияние блуждающих токов на коррозию и методы дренажной защиты. Приведены сведения о защите скважин и внутренней защите промышленного оборудования.  [c.4]

Известны два способа электрохимической защиты металла о г кор-(юзии протекторная и катодная защита внешним током (электрозащита). Ио первому способу заищта металла производится путем присоединения к нему другого металла с более отрицательным потенциалом. При этом защищаемый металл становится катодом, а п])исоединяемый — анодом, или так называемым протектором. По второму способу защита осу-п.1,ествляется с помощью тока oi вне1Пнего источника. В этом случае защищаемый металл присоединяется к отрицательному полюсу в качестве катода. Анодом может быть электрод из любого проводника, обеспечивающего низкое переходное сопротивление при погружении его (I коррозионную среду.  [c.80]

На протекторы из магниевых сплавов для катодной защиты в США каждый год потребляют примерно 5,5 млн. кг магния [101. Магниевые аноды часто легируют 6 % А1 и 3 % Zn для уменьшения питтингообразования и увеличения выхода по току. Достоинством магнйя высокой чистоты, содержащего 1 % Мп, является более высокий потенциал (с более высоким выходным анодным током) [11 ]. В морской воде значения выхода по току обоих сплавов близки, однако в обычных грунтах этот показатель для сплава с 1 % Мп несколько ниже. Практически токоотдача магниевых анодов в среднем составляет около 1100 А-ч/кг по сравнению с теоретическим значением 2200 А-ч/кг. Схема стального бака для горячей воды с магниевым анодом, представлена на рис. 12.3. Применение таких стержней может продлить жизнь стальных емкостей на несколько лет, при условии их замены в требуемые сроки. Степень защиты выше в воде с высокой элек-  [c.219]


В случае амфотерных металлов (например, алюминия, цинка, свинца, олова) избыток щелочи, образующийся на поверхности перезащищенных конструкций, приводит к увеличению агрессивности среды, а не к подавлению коррозии. На примере свинца было показано [21 ], что катодная защита достижима и в щелочной области pH, но критический потенциал полной защиты (см. ниже) сдвигается в область более отрицательных значений. Алюминий может быть катодно защищен от питтинговой коррозии, если обеспечить его контакт с цинком [221, который выполняет роль протектора. Контакт с магнием может привести к перезащите с последующим разрушением алюминия.  [c.224]

Следовательно, железо, имеющее в морской воде коррозионный потенциал около —0,4 В, непригодно для использования в качестве протектора для катодно защищаемого алюминия, в отличие от цинка, который имеет более подходящий коррозионный потенциал, близкий —0,8 В. Для нержавеющей стали 18-8 критический потенциал в 3 % растворе Na l равен 0,21 В, для никеля — около 0,23 В. Следовательно, контакт этих металлов с имеющими соответствующую площадь электродами из железа или цинка может обеспечить им в морской воде эффективную катодную защиту, предупреждающую питтинговую коррозию. Элементы создаваемых конструкций (например, кораблей и шельфовых нефтедобывающих платформ) иногда специально проектируют таким образом, чтобы можно было успешно использовать гальванические пары такого рода.  [c.227]

Некоторые специалисты выразили скептическое отношение к результатам этих исследований. Еще в 1935 г. в одной из работ Американского института нефти в Лос-Анжелесе утверждалось, что токи от цинковых анодов (протекторов) на сравнительно большом расстоянии уже не могут защитить трубопровод и что защита от химического воздействия (например кислот) вообще невозможна. Поскольку в США вплоть до начала текущего столетия трубопроводы нередко прокладывали без изоляционных покрытий, катодная защита для них была сравнительно дорогостоящей и для ее осуществления требовались значительные токи. Поэтому естественно, что хотя в США в начале 1930-х гг. и защищали трубопроводы длиной около 300 км цинковыми протекторами защита катодными установками (катодная защита током от постороннего источника) обеспечивалась только на трубопроводах протяженностью до 120 км. Сюда относятся трубопроводы в Хьюстоне (штат Техас) и в Мемфисе (штат Теннесси), для которых Кун применил катодную защиту в 1931—1934 гг. Весной 1954 г. И. Денисон получил от Ассоциации инженеров коррозионистов премию Уитни. При этом открытие Куна стало известным вторично, потому что Денисон заявил На первой конференции по борьбе с коррозией в 1929 г. Кун описал, каким образом он с применением выпрямителя снизил потенциал трубопровода до — 0,85 В по отношению к насыщенному медносульфатному электроду. Мне нет нужды упоминать, что эта величина является решающим критерием выбора потенциала для катодной защиты и используется теперь во всем мире .  [c.37]

Измерение сопротивления растеканию тока, например от протекторов или от анодных заземлйтелей станций катодной защиты, проводится по трехэлектродной схеме. При этом измерительный ток подводится (рис. 3.23) через измеряемый и вспомогательный заземлители, а напряжение измеряется между заземлйтелей и зондом. Вспомогательный за-землитель должен быть удален примерно на четырехкратную длину контролируемого заземлителя (на 40 м), а зонд — примерно на двукратную длину заземлителя (на 20 м). Отсюда следует, что измерить сопротивление растеканию тока с трубопроводов и рельсов практически невозможно. При измерении сопротивления растеканию с изолированных участков в грунт всегда охватывается только ограниченная длина трубопровода, зависящая от примененной частоты.  [c.118]

Для внутренней защиты резервуаров и для защиты портовых сооружений и судов применяют полярные покрытия толщиной около 0,5 мм. При катодной защите для уменьшения катодного образования пузырьков нельзя применять омыляющиеся связующие [30, 31]. Образование пузырьков, как и катодный подрыв, усиливаются по мере снижения потенциала. Вероятно, что имеется некоторый критический предельный потенциал образования пузырьков для оценки системы покрытия, однако этот вопрос еще недостаточно исследован. Ввиду такой зависимости от потенциала приходится, например, поблизости от анодных заземлителей систем катодной защиты предусматривать особую защиту (см. раздел 18.3.2.2). Иногда отмечаемое ухудшение защитного действия при слишком близком располонгении протекторов, напротив, обусловливается не величиной потенциала, а химическим действием образующего гидрата Mg OH)j [21].  [c.172]

Правильно сконструированные и хорошо изготовленные протекторы могут работать до полного почти израсходования используемого протекторного сплава. У протекторов худшего качества большая или меньшая часть материала может во время службы отвалиться и поэтому перестанет давать эффект катодной защиты. По этим же соображениям необходимо обеспечить хорошее сцепление между протекторным сплавом и сердечником (держателем). Согласно техническим условиям 07], сцепление должно распространяться не менее чем на 30 % площади контакта. У высококачественных протекторов этот процент значительно выше, потому что между протекторным сплавом и держателем образуется промежуточный сплавленный слой. Чтобы облегчить формирование такого слоя, держатель должен быть тщательно очищен. Органические загрязнения удаляют в соответствующей ванне (растворителем РЗ). Ржавчину растворяют в солянокислотной травильной ванне. После промывки и сушки держатель приобретает светлую (неокисленную) металлическую поверхность и его можно сразу же заливать протекторным сплавом. Светлую поверхность держателей можно получать также дробеструйной очисткой до класса чистоты по стандарту Sa 2V2 [27] и затем сразу же заливать ее сплавом.  [c.190]

Катодная защита с помощью протектора обеспечивается при правильном ее выполнении обычно без больших технических затрат. Однажды смонтированная система защиты работает без обслуживания, нуждаясь лишь в эпизодическом контроле потенциала. Системы защиты с протекторами (гальваническими анодами) независимы от сети электроснабжения и ввиду низкого движущего напряжения обычно не создают помех для близлежащих объектов. Ввиду малости напряжений обычно не возникает проблем и по технике безопасности электрооборудования. Системы с протекторами поэтому можно размещать на взрывоопасных участках. Для защиты от грунтовой коррозии протекторы могут быть размещены вплотную к защищаемому объекту в той же траншее (в том же котловане), так что практически не требуется никаких дополнительных земляных работ. Благодаря подсоединению протекторов к объектам, испытывающим влияние других источников, в области катодной воронки напряжения от внешних источников можно обеспечить, например при ремонтных работах, ограниченную защиту этих опасных мест (защиту горячих участков ). На органические покрытия для пассивной защиты от коррозии протекторная защита не влияет или оказывает лишь незначительное влияние (см. раздел 6). Поскольку защитные системы с протекторами ввиду низкого движущего напряжения должны выполняться возможно более низкоомными (см. рис. 7.2), потенциал получается сравнительно постоянным. Если потенциал объекта защиты становится более положительным, то отдаваемый ток защиты увеличивается, и наоборот. Поэтому можно говорить и о саморегулируемости (потенциала).  [c.197]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]


Если при проектировании защитной системы будет установлено, что с применением протекторов можно получить лишь небольшой запас в величине защитного тока или вообще не обеспечивается запаса с приемлемыми затратами, то следует предпочесть способ защиты с наложением тока от постороннего источника. При наличии блуждающих токов, дагке если они влияют на защищаемые резервуары-хранилища лишь в сравнительно слабой степени, тоже следует применять станции катодной защиты. В тех случаях, когда протекторная защита и защита с наложением тока от внешнего источника в техническом и экономическом отношениях равноценны, применение станций катодной защиты тоже более выгодно ввиду большого запаса по величине защитного тока. Напротив, преимуществом протекторной защиты является более высокая эксплуатационная наден ность.  [c.273]

Рис. 12.2. Катодная защита резервуара мазутохранилища магниевыми протекторами / — здание 2 — изолирующие фланцы Л — посторонние сооружения 4 — магниевые протекторы а, и 5 — анодные и катодные кабели 6 — трубопроводы 7 — измерительный канал на глубине около 2,3 м — регулируемое сопротивление (резистор, настраиваемый на 8 Ом) 9 — измерительный пункт Рис. 12.2. <a href="/info/6573">Катодная защита</a> резервуара мазутохранилища <a href="/info/168396">магниевыми протекторами</a> / — здание 2 — изолирующие фланцы Л — посторонние сооружения 4 — <a href="/info/168396">магниевые протекторы</a> а, и 5 — анодные и катодные кабели 6 — трубопроводы 7 — <a href="/info/306968">измерительный канал</a> на глубине около 2,3 м — регулируемое сопротивление (резистор, настраиваемый на 8 Ом) 9 — измерительный пункт
Согласно нормали TRbF 102, пункт 6.2, использование резервуаров-храиилищ и подключенных к ним трубопроводов в качестве заземляте-лей не разрешается [17]. Для снижения катодного сопротивления растеканию тока при одновременном предотвращении повышенной потребности в защитном токе оказалось целесообразным подсоединять к резервуарам-хранилищам в качестве заземлителей магниевые протекторы. Сопротивление растеканию тока с протекторов в грунт должно составлять 65 В//утечки. Величину защитного тока следует настроить так, чтобы получалось небольшое натекание тока (порядка нескольких миллиампер) в магниевые протекторы, с целью уменьшить их коррозию. При защитной схеме с контролем аварийного потенциала (FS), если вспомогательный заземлитель располагается в воронке напряжения над анодным заземлителем, возмол но срабатывание далее и при отсутствии аварийного потенциала. В таких случаях, которые впрочем можно предотвратить проведением соответствующих мероприятий при сооружении систем катодной защиты, может оказаться полезным включение конденсатора соответствующей емкости в подводящий кабель к вспомогательному заземлителю. Во взрывоопасных зонах нул<но также учитывать и соответствующие предписания и нормативы [16, 18—20].  [c.285]

Катодная защита судов от коррозии охватывает комплекс мероприятий по наружной защите подводной части судна и всех навесных устройств и отверстий (например, гребного винта, руля, кронштейнов гребного вала, кингстонных выгородок, черпаков, струйных рулей) и по внутренней защите различных танков (резервуаров балластной и питьевой воды, для топлива и хранения других продуктов), трубопроводов (конденсаторов и теплообменников) и трюмов. Указания по выбору размеров и распределению анодов или протекторов имеются в нормативных документах [1—5]. Суда отличаются от других защищаемых объектов, рассматриваемых в настоящем справочнике, тем, что они в ходе эксплуатации подвергаются воздействию вод самого различного химического состава. Важное значение при этом имеют в первую очередь со-лесодержание и электропроводность, поскольку эти факторы оказывают существенное влияние на действие коррозионных элементов (см. раздел 4.2) и на распределение защитного тока (см. раздел 2.2.5). Кроме того, на судах приходится учитывать проблемы, связанные с наличием разнородных металлов (см. раздел 2.2.5). Мероприятия по защите судов от блуждающих токов рассмотрены в разделе 16.4.  [c.352]

Измерительные электроды для систем катодной защиты судов с защитными установками представляют собой прочные электроды сравнения (см. раздел 3.2 и табл. 3.1), постоянно находящиеся в морской воде при съеме небольших токов для целей регулирования они не должны подвергаться поляризации. Обычно применяемые в остальных случаях медносульфатные и каломелевые электроды сравнения могут быть использованы только для контрольных измерений. Никакие электроды сравнения с электролитом и диафрагмой (мембраной) непригодны для использования в качестве измерительных электродов длительного действия для защитных преобразователей с регулированием потенциала. Измерительными электродами могут быть только электроды типа металл — среда, имеющие достаточно стабильный потенциал. Электрод серебро — хлорид серебра имеет потенциал, зависящий от концентрации ионов хлора в воде [см. формулу (2.29)], что необходимо учитывать введением соответствующих поправок [4]. Наилучшим образом зарекомендовали себя цинковые электроды. Измерительные электроды похожи на протекторы, но меньше их по размерам. Они имеют постоянный стационарный потенциал, мало подвергаются поляризации, а в случае образования поверхностного слоя могут быть при необходимости регенерированы анодным толчком (импульсом) тока. Срок их службы составляет не менее пяти лет.  [c.366]


Смотреть страницы где упоминается термин Протекторы и катодная защита : [c.273]    [c.84]    [c.196]    [c.68]    [c.29]    [c.38]    [c.192]    [c.195]    [c.198]    [c.312]    [c.339]    [c.350]    [c.358]    [c.364]   
Смотреть главы в:

Коррозия и защита от коррозии  -> Протекторы и катодная защита



ПОИСК



V катодная

Анодная защита катодными протекторами

Защита катодная наложенным током конструкции присоединения протекторов

Катодная защита

Конструктивное оформление защиты мерника 50-ноЙ серной кислоты с катодным протектором

Протектор катодный

Протекторы



© 2025 Mash-xxl.info Реклама на сайте