Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коши—Грина) линейный

Приведенная зависимость совпадает с формулой для линейно-упругого тела. Она распространяется на случай больших деформаций при замене составляющих тензора малых деформаций компонентами тензора Коши-Грина. В соответствии с зависимостью (9.9.7)  [c.182]

В линейной теории равновесия сплошной среды отпадает также необходимость в различении тензоров деформации Коши— Грина и Альманзи — Гамеля Ш. Как следует из (3.6.5) и (4.3.5) гл. II, тот и другой тензоры должны быть по (1.1.1) и  [c.101]


Коши — Грина, 34 Лагранжа, 40 Пиола, 35 Фингера, 36 Эйлера, 40 лагранжев, 35 линейный, 39 материальный, 35 пластических, 89, 92, 95, 104  [c.260]

Очевидно, тензор приращения деформаций между состояниями и Уа определяется разностью тензоров меры деформации Коши — Грина в этих состояниях и состоит из линейной и нелинейной частей относительного вектора приращения смещений Аи = — %.  [c.94]

Здесь рассматриваются аналоги уравнений линейной теории упругости в перемещениях , получаемых после замены тензора напряжений его представлением через линейный тензор деформации, а последнего— выражением через вектор перемещения. В нелинейной теории дело осложняется возможностями определения напряженного состояния несколькими тензорами (Коши, Пиола) и множественностью их представлений через меры деформации (Коши — Грина, Фингера, Альманзи) или градиент места. Вектор перемещения предпочтительно заменить вектором места в актуальной конфигурации.  [c.123]

Фундаментальный вклад в классическую теорию внесли Гук, Навье, Коши, Ляме, Грин, Клапейрон. Гуком в 1678 г. установлен закон, линейно связывающий напряжения и деформации.  [c.5]

Утверждение. Определяющие соотношения для любых материалов (упругих и неупругих), справедливые при геометрически линейном деформировании тела, обобщаются на случай геометрически нелинейного деформирования при условии малости деформаций прямой заменой тензора напряжений Коши а, тензора деформаций Коши е и их скоростей , к соответственно вторым тензором напряжений Пиола — Кирхгофа S, тензором деформаций Грина — Лагранжа Е и их материальными производными S, Е. При такой деформации тензоры S и Е имеют простую механическую интерпретацию компоненты этил тензоров приближенно равны компонентам тензоров и ё, полученных из тензоров а и е операцией поворота, осуществляемой ортогональным тензором R. Такие же приближенные равенства справедливы для материальных производных компонент-зтих тензоров, т. е. S w сг, Е 6, S сг, Ё 6.  [c.78]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]


Точные уравнения нелинейной теории упругости даже в самых простых случаях приводят к математически сложным задачам. Поэтому повсеместно применяется линейная теория упругости. Ее уравнения были выведены в первой половине XIX века Коши, Навье, Ляме, Клапейроном, Пуассоном и другими учеными — в основном французского происхождения (кроме Дж. Грина).  [c.69]

Итак, квантовомеханический пространственно-временной эволюционный подход позволил нам избавиться от устаревшей проблемы отбора решений и специальных правил обхода полюсов функций Грина. Сила этого подхода в том, что он приводит не к вычислению отклика среды на действие источника, а к решению начальной задачи (задачи Коши), для которой существуют теоремы о существовании и единственности решения. Фейнман в своем первоначальном подходе к построению диаграммной техники для функции Грина постулировал правила обхода ее полюсов. Эти правила оказались абсолютно правильными для задач квантовой теории поля, в которой рассматривается только рассеяние одной, двух (т.е. конечного числа) частиц друг на друге, а все бесконечное число степеней свободы утоплено в ненаблюдаемый в реальных переходах вакуум. Его роль проявляется только в виртуальных переходах и сводится к перенормировке параметров частиц (закона дисперсии, массы, заряда). При рассеянии частиц и волн в макроскопических системах такой подход оказывается недостаточным, поскольку при этом макроскопическое число частиц или волн оказывается в возбужденных ( над вакуумом ) состояниях. Использование правил отбора решений Фейнмана для таких задач в монографиях [41, 42] приводит к ошибочным результатам. В этом случае работают все четыре обхода двух полюсов, то есть четыре функции Грина, и необходимо использовать диаграммную технику Келдыша [39], полностью эквивалентную задаче Коши. Такая ситуация имеет место для любой классической задачи, связанной с нелинейным стохастическим дифференциальным уравнением. Эти задачи эквивалентны квантовым (хороший пример - теория турбулентности [43]). Только для линейных задач с параметрической случайностью , т.е. для линейных уравнений со случайными коэффициентами, из четырех функций Грина остаются две - запаздывающая С и д опережающая. Мы увидим, что энергия рассеянных волн выражается через их произведение. При этом (3 отвечает за эволюцию поля на нижней ветви контура Швингера-Келдыша, а 0 - за эволюцию на верхней ветви (см. рис. 2).  [c.67]

В частном случае движения твердого тела Р Р — I, поскольку йз = йз для любого е, но сам тензор Р все же не является тождественным, как это видно из (2.81). Следовательно, линейное растяжение основных расстояний вокруг точки Р должно описываться так называемым тензором Коши — Грина Р Р. Кроме того, из (2.85) видно, что Р Р должен быть положительно определенным, так что существует симметрический тензор 11, орределяемый формулой  [c.32]

Слово линейный относится здесь к зависимости напряжений от прошедшей предыстории С — относительной деформа- ции. Природа памяти материала линейна в том смысле, что неупругие напряжения, соответствующие предыстории деформации, приводящей к относительному правому тензору Коши — Грина Сг, представляют собой сумму неупругих напряжений, соответствующих любым двум предысториям деформации, сумма относительных правых тензоров Коши — Грина которых равна С . От текущего тензора деформации (i) напряжения могут зависеть произвольным образом. Колеман и Нолл заметили, что выбор в качестве исходной любой другой из бесконечного, множества приведенных форм для общего определяющего соотношения также приводил бы тем же самым способом к линейному результату, но другому. Поскольку теория, которая линейна при одной мере деформации ), например С<, может быть нелинейной при другой мере, например U<, то получаемые таким образом теории конечных деформаций, вообще говоря, отличаются одна от другой, но, разумеется, все они согласуются друг с другом в смысле аппроксимации (1), т. е. напряжения, соответствующие, согласно этим теориям, семейству предысторий градиента такому, что IIF — F (041-> О, асимптотически равны между собой.  [c.389]


Таким образом, t ij — линейная часть приращений компонент тензора деформаций Грина — Лагранжа tEij, отнесенного к текущей конфигурации, является инкрементальным аналогом производной Коттера — Ривлина от тензора деформаций Альман-си или инкрементальным аналогом тензора скоростей деформаций. Кроме того, приращения компонент второго тензора напряжений Пиола — Кирхгофа, отнесенные к текущей конфигурации, являются инкрементальными аналогами компонент производной Трусделла от тензора напряжений Коши.  [c.196]


Смотреть страницы где упоминается термин Коши—Грина) линейный : [c.76]   
Теория упругости (1970) -- [ c.59 , c.101 ]



ПОИСК



Грина

Коши)



© 2025 Mash-xxl.info Реклама на сайте